
מערכת זיהוי כתב יד בעברית
ארכיטקטורה כללית
מבנה תיקיות
שלב 1: הקמת תשתית בסיסית

1.1 Backend - Express + Firebase
1.2 Frontend - Next.js
1.3 Firebase Setup

(CRITICAL) שלב 2: שיפור וחידוד תמונות
2.1 Image Enhancement Pipeline
פילטרים זמינים 2.2
(Real-time) ממשק שיפור תמונות 2.3
תכונות ממשק המשתמש 2.4
קומפוננטים נדרשים 2.4.1
2.5 Presets מוכנים
2.6 WebSocket לתצוגה בזמן אמת
2.7 API Endpoints לשיפור תמונות
שמירת הגדרות לכל תמונה 2.8
Python Enhancement Service - מימוש טכני 2.9
אופטימיזציה לביצועים 2.10

שלב 3: עיבוד תמונות וסגמנטציה
3.1 Image Processor
Firestore-מבנה נתונים ב 3.2

(Annotation Interface) שלב 4: ממשק תיוג
תכונות הממשק 4.1
4.2 Flow עבודה מלא

שלב 5: מודלים היברידיים
5.1 Character Model (EfficientNet-based)
5.2 Word Model (CRNN)
5.3 Line Model (TrOCR / Vision Transformer)
שילוב המודלים 5.4

שלב 6: אימון מתמשך
6.1 Training Pipeline
6.2 Data Augmentation
6.3 Metrics Dashboard

API Endpoints
Authentication & Images
Image Enhancement

Annotation & Training
OCR & Stats

סדר עבודה מומלץ
תלותיות בין שלבים

name: Hebrew OCR System overview: מערכת זיהוי כתב יד בעברית עם Next.js, Express,
Firebase ומודל ML היברידי. תומכת בזיהוי אותיות, מילים ושורות עם אימון שיתופי. todos:

id: setup-monorepo content: הקמת מבנה פרויקט - frontend, backend, ml-service
status: pending
id: firebase-setup content: הגדרת Firebase - Firestore, Storage, Auth status:
pending
id: backend-api content: בניית Express API עם routes/controllers/services status:
pending
id: frontend-upload content: ממשק העלאת תמונות ב-Next.js status: pending
id: image-enhancement content: שלב שיפור וחידוד תמונות עם תצוגה בזמן אמת status:
pending
id: segmentation-service content: שירות Python)לחלוקת תמונות)שורות/מילים/אותיות
status: pending
id: annotation-interface content: ממשק תיוג אינטראקטיבי status: pending
id: character-model content: מודל זיהוי אותיות (EfficientNet) status: pending
id: word-model content: מודל זיהוי מילים (CRNN) status: pending
id: line-model content: מודל זיהוי שורות (TrOCR) status: pending
id: model-fusion content: שילוב תוצאות מכל המודלים status: pending
id: training-pipeline content: צינור אימון מתמשך status: pending
id: deployment content: פריסה ופרסום ב-GitHub status: pending

מערכת זיהוי כתב יד בעברית

ארכיטקטורה כללית

Parse error on line 2:
... subgraph frontend [Frontend - Next.js]
-----------------------^
Expecting 'SEMI', 'NEWLINE', 'SPACE', 'EOF', 'GRAPH', 'DIR',
'TAGEND', 'TAGSTART', 'UP', 'DOWN', 'subgraph', 'end', 'SQE',
'PE', '-)', 'DIAMOND_STOP', 'MINUS', '--', 'ARROW_POINT',

'ARROW_CIRCLE', 'ARROW_CROSS', 'ARROW_OPEN',
'DOTTED_ARROW_POINT', 'DOTTED_ARROW_CIRCLE',
'DOTTED_ARROW_CROSS', 'DOTTED_ARROW_OPEN', '==',
'THICK_ARROW_POINT', 'THICK_ARROW_CIRCLE', 'THICK_ARROW_CROSS',
'THICK_ARROW_OPEN', 'PIPE', 'STYLE', 'LINKSTYLE', 'CLASSDEF',
'CLASS', 'CLICK', 'DEFAULT', 'NUM', 'PCT', 'COMMA', 'ALPHA',
'COLON', 'BRKT', 'DOT', 'PUNCTUATION', 'UNICODE_TEXT', 'PLUS',
'EQUALS', 'MULT', got 'SQS'

מבנה תיקיות

hebrew-ocr/
├── frontend/ # Next.js App
│ ├── src/
│ │ ├── app/ # App Router
│ │ ├── components/ # React Components
│ │ │ ├── upload/ # Upload components
│ │ │ ├── enhancement/ # Image enhancement UI
│ │ │ ├── annotation/ # Annotation interface
│ │ │ └── common/ # Shared components
│ │ ├── hooks/ # Custom hooks
│ │ ├── services/ # API calls
│ │ └── types/ # TypeScript types
│ └── package.json
│
├── backend/ # Express API
│ ├── src/
│ │ ├── routes/ # API routes
│ │ ├── controllers/ # Request handlers
│ │ ├── services/ # Business logic
│ │ │ ├── enhancement.service.ts
│ │ │ └── websocket.service.ts
│ │ ├── middleware/ # Auth, validation
│ │ └── config/ # Firebase config
│ └── package.json
│
├── ml-service/ # Python ML Microservice
│ ├── models/ # Trained models
│ ├── services/
│ │ ├── enhancement.py # Image enhancement pipeline
│ │ ├── segmentation.py # Image segmentation
│ │ ├── character_ocr.py # Character recognition
│ │ ├── word_ocr.py # Word recognition
│ │ └── line_ocr.py # Line recognition
│ ├── training/ # Training scripts
│ └── requirements.txt
│
└── shared/ # Shared types/utils

שלב 1: הקמת תשתית בסיסית

1.1 Backend - Express + Firebase

Firebase Admin SDK הגדרת
routes/controllers/services בסיסי עם API מבנה
Middleware לאימות ו-rate limiting
Upload endpoint לתמונות

1.2 Frontend - Next.js

Firebase Client SDK הגדרת
drag & drop ממשק העלאת תמונות עם
תצוגת תמונות שהועלו

1.3 Firebase Setup

Firestore collections: users, images, annotations, training_data
Storage buckets: uploads/, processed/, models/
Security rules

(CRITICAL) שלב 2: שיפור וחידוד תמונות

.שלב קריטי לפני אימון - שיפור איכות התמונות עם תצוגה בזמן אמת

2.1 Image Enhancement Pipeline

Parse error on line 1:
flowchart LR Ori
^
Expecting 'NEWLINE', 'SPACE', 'GRAPH', got 'ALPHA'

פילטרים זמינים 2.2

| פילטר | תיאור | פרמטרים |

|-------|--------|----------|

| Grayscale | המרה לגווני אפור | - |

| Denoise | הסרת רעש | strength: 1-10 |

| Contrast | שיפור ניגודיות | CLAHE clipLimit: 1-5 |

| Binarization | המרה לשחור-לבן | method: Otsu/Adaptive, blockSize, C |

| Deskew | תיקון הטיה | auto-detect angle |

| Sharpen | חידוד | kernel size, strength |

| Morphology | פעולות מורפולוגיות | dilate/erode, kernel size |

(Real-time) ממשק שיפור תמונות 2.3

interface EnhancementSettings {
 grayscale: boolean;
 denoise: {
 enabled: boolean;
 strength: number; // 1-10
 };
 contrast: {
 enabled: boolean;
 clipLimit: number; // 1-5
 tileSize: number; // 8-16
 };
 binarization: {
 enabled: boolean;
 method: 'otsu' | 'adaptive' | 'sauvola';
 blockSize: number; // 11-51 (odd)
 constant: number; // 2-20
 };
 deskew: {
 enabled: boolean;
 maxAngle: number; // max rotation degrees
 };
 sharpen: {
 enabled: boolean;
 strength: number; // 0.5-3
 };
}

interface EnhancementPreview {
 originalImage: string; // base64

 enhancedImage: string; // base64
 settings: EnhancementSettings;
 processingTime: number; // ms
 qualityScore: number; // 0-100
}

תכונות ממשק המשתמש 2.4

תצוגה בזמן אמת: כל שינוי בפרמטר מעדכן את התצוגה מיידית
תמונה מקורית לצד תמונה משופרת :Side-by-Side השוואה
Slider comparison: גרירה להשוואה על אותה תמונה
Zoom & Pan: התקרבות לפרטים קטנים
Undo/Redo: חזרה לשלבים קודמים
Presets: הגדרות מוכנות מראש לסוגי כתב יד שונים
Quality Score: ציון איכות אוטומטי לתמונה

קומפוננטים נדרשים 2.4.1

// frontend/src/components/enhancement/
├── EnhancementPanel.tsx // פאנל הגדרות עיקרי
├── ImageComparison.tsx // השוואה side-by-side
├── EnhancementSlider.tsx // Slider להשוואה
├── PresetSelector.tsx // בחירת preset
├── QualityIndicator.tsx // אינדיקטור איכות
└── RealTimePreview.tsx // תצוגה בזמן אמת

:מבנה הממשק

┌───┐
│ Enhancement Interface │
├───┤
│ [Original] | [Enhanced] │
│ ┌────────┐ | ┌────────┐ │
│ │ │ | │ │ │
│ │ Image │ | │ Image │ │
│ │ │ | │ │ │
│ └────────┘ | └────────┘ │
│ | │
│ Quality: 65 → 92 │
├───┤
│ Settings Panel: │
│ ☑ Grayscale │
│ ☑ Denoise [████░░] 6/10 │

│ ☑ Contrast [███░░░] 3/5 │
│ ☑ Binarization [Adaptive ▼] │
│ Block Size: [████░░] 21 │
│ ☑ Deskew [Auto] │
│ ☐ Sharpen [██░░░] 2/3 │
│ │
│ Presets: [דיו בהיר ▼] [Apply] │
│ [Undo] [Redo] [Reset] [Apply & Save] │
└───┘

2.5 Presets מוכנים

const ENHANCEMENT_PRESETS = {
 light_ink: {
 name: 'דיו בהיר',
 settings: { contrast: { clipLimit: 4 }, binarization: { constant: 5 } }
 },
 dark_background: {
 name: 'רקע כהה',
 settings: { binarization: { method: 'adaptive', blockSize: 31 } }
 },
 faded_document: {
 name: 'מסמך דהוי',
 settings: { contrast: { clipLimit: 5 }, sharpen: { strength: 2 } }
 },
 noisy_scan: {
 name: 'סריקה רועשת',
 settings: { denoise: { strength: 8 }, binarization: { method: 'sauvola' } }
 },
 tilted_image: {
 name: 'תמונה מוטה',
 settings: { deskew: { enabled: true, maxAngle: 15 } }
 }
};

2.6 WebSocket לתצוגה בזמן אמת

EnhancementServiceWebSocketFrontendUser

EnhancementServiceWebSocketFrontendUser

Latency target: under 200ms

Adjust slider

Send settings (debounced 100ms)

Process with new settings

Return enhanced preview

Update preview image

Show real-time result

2.7 API Endpoints לשיפור תמונות

| Method | Endpoint | תיאור |

|--------|----------|--------|

| POST | /api/enhance/preview | קבלת תצוגה מקדימה עם הגדרות |

| POST | /api/enhance/apply | החלת שיפורים ושמירה |

| GET | /api/enhance/presets | קבלת רשימת presets |

| POST | /api/enhance/auto | שיפור אוטומטי מומלץ |

| GET | /api/enhance/quality/:imageId | ציון איכות לתמונה |

שמירת הגדרות לכל תמונה 2.8

interface ImageEnhancementDoc {
 imageId: string;
 originalPath: string;
 enhancedPath: string;
 settings: EnhancementSettings;
 qualityBefore: number;
 qualityAfter: number;
 appliedAt: Timestamp;
}

Python Enhancement Service - מימוש טכני 2.9

:ספריות נדרשות

opencv-python - עיבוד תמונה בסיסי
scikit-image - פילטרים מתקדמים
numpy - חישובים
Pillow - מניפולציה על תמונות

:פונקציות עיקריות

ml-service/services/enhancement.py
def apply_enhancement(image: np.ndarray, settings: dict) -> np.ndarray:
 """Apply enhancement pipeline based on settings"""
 if settings['grayscale']:
 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 if settings['denoise']['enabled']:
 image = denoise_image(image, settings['denoise']['strength'])

 if settings['contrast']['enabled']:
 image = enhance_contrast(image, settings['contrast'])

 if settings['binarization']['enabled']:
 image = binarize_image(image, settings['binarization'])

 if settings['deskew']['enabled']:
 image = deskew_image(image, settings['deskew']['maxAngle'])

 if settings['sharpen']['enabled']:
 image = sharpen_image(image, settings['sharpen']['strength'])

 return image

def calculate_quality_score(image: np.ndarray) -> float:
 """Calculate image quality score (0-100)"""
 # Based on contrast, sharpness, noise level
 pass

אופטימיזציה לביצועים 2.10

Caching: שמירת תצוגות מקדימות ב-Redis/Memory
Debouncing: 100 עיכוב שלms לפני שליחה לשרת
Image compression: דחיסת תמונות לפני שליחה (WebP)
Batch processing: עיבוד מספר תמונות במקביל

GPU acceleration: שימוש ב-CUDA אם זמין

שלב 3: עיבוד תמונות וסגמנטציה

הערה חשובה: שלב זה מתבצע על תמונות משופרות)לאחר שלב 2(. שיפור התמונות משפר
.משמעותית את דיוק הסגמנטציה והזיהוי

3.1 Image Processor

קבלת תמונה משופרת)לאחר שלב 2(
חיתוך אוטומטי
(Line Detection) זיהוי שורות
(Word Segmentation) זיהוי מילים בתוך שורות
(Character Segmentation) זיהוי אותיות בתוך מילים

Parse error on line 1:
flowchart LR Enh
^
Expecting 'NEWLINE', 'SPACE', 'GRAPH', got 'ALPHA'

Firestore-מבנה נתונים ב 3.2

// Image document
interface ImageDoc {
 id: string;
 userId: string;
 originalPath: string;
 enhancedPath?: string;
 status: 'uploaded' | 'enhancing' | 'enhanced' | 'processing' | 'ready' |
'annotated';
 enhancement?: {
 settings: EnhancementSettings;
 qualityBefore: number;
 qualityAfter: number;
 appliedAt: Timestamp;
 };
 segmentation?: {
 lines: LineSegment[];
 words: WordSegment[];
 characters: CharSegment[];
 };
 createdAt: Timestamp;

}

// Annotation document
interface AnnotationDoc {
 id: string;
 imageId: string;
 userId: string;
 type: 'character' | 'word' | 'line';
 boundingBox: BoundingBox;
 label: string;
 confidence: number;
 isVerified: boolean;
 createdAt: Timestamp;
}

(Annotation Interface) שלב 4: ממשק תיוג

תכונות הממשק 4.1

bounding boxes תצוגת תמונה עם
מעבר בין מצבי תיוג: אותיות / מילים / שורות
מקלדת וירטואלית בעברית
אישור/תיקון תיוג אוטומטי
התקדמות ומשוב למשתמש

4.2 Flow עבודה מלא

MLEnhancementBackendFrontendUser

MLEnhancementBackendFrontendUser

Batch training triggered

Upload Image

POST /api/images

Save original image

Enhance Image (Real-time)

WebSocket: Enhancement settings

Process with settings

Enhanced preview

Real-time preview

Apply Enhancement

POST /api/enhance/apply

Apply final settings

Enhanced image saved

Process Enhanced Image

Segmentation + Initial Labels

Image with segments

Verify/Correct Labels

POST /api/annotations

Save to training_data

שלב 5: מודלים היברידיים

5.1 Character Model (EfficientNet-based)

Fine-tuned EfficientNet-B0
אותיות + סימני פיסוק 27
אימון על אותיות מבודדות

5.2 Word Model (CRNN)

CNN לחילוץ features
RNN (LSTM) לסדר אותיות
CTC Loss לאימון

5.3 Line Model (TrOCR / Vision Transformer)

Pre-trained transformer
Fine-tuning על שורות בעברית
תמיכה בהקשר מלא

שילוב המודלים 5.4

Parse error on line 1:
flowchart TB Inp
^
Expecting 'NEWLINE', 'SPACE', 'GRAPH', got 'ALPHA'

שלב 6: אימון מתמשך

6.1 Training Pipeline

מאומתות annotations איסוף
השיפור pipeline שימוש בתמונות משופרות: כל תמונה לאימון עוברת דרך
training batches יצירת
למודלים incremental אימון
model versions שמירת

:זרימת נתונים לאימון

Parse error on line 1:
flowchart LR Ann
^
Expecting 'NEWLINE', 'SPACE', 'GRAPH', got 'ALPHA'

6.2 Data Augmentation

:לאימון augmentation בנוסף לשיפור התמונות, יש להוסיף

Rotation (±5 degrees)

Scaling (0.9-1.1)
Brightness adjustment
Gaussian noise
Elastic distortion

6.3 Metrics Dashboard

דיוק לפי סוג)אות/מילה/שורה(
כמות נתונים מתויגים
התקדמות אימון
Impact of enhancement: השוואת דיוק עם/בלי שיפור

API Endpoints

Authentication & Images

| Method | Endpoint | תיאור |

|--------|----------|--------|

| POST | /api/auth/register | הרשמת משתמש |

| POST | /api/images/upload | העלאת תמונה |

| GET | /api/images/:id | קבלת תמונה עם segmentation |

Image Enhancement

| Method | Endpoint | תיאור |

|--------|----------|--------|

| POST | /api/enhance/preview | קבלת תצוגה מקדימה עם הגדרות |

| POST | /api/enhance/apply | החלת שיפורים ושמירה |

| GET | /api/enhance/presets | קבלת רשימת presets |

| POST | /api/enhance/auto | שיפור אוטומטי מומלץ |

| GET | /api/enhance/quality/:imageId | ציון איכות לתמונה |

| WebSocket | /ws/enhance | תצוגה בזמן אמת |

Annotation & Training

| Method | Endpoint | תיאור |

|--------|----------|--------|

| POST | /api/annotations | שמירת תיוג |

| GET | /api/annotations/:imageId | קבלת תיוגים לתמונה |

OCR & Stats

| Method | Endpoint | תיאור |

|--------|----------|--------|

| POST | /api/ocr/recognize | זיהוי טקסט בתמונה |

| GET | /api/stats | סטטיסטיקות מערכת |

סדר עבודה מומלץ

(Firebase, Express, Next.js) שבוע 1: הקמת תשתית בסיסית .1
Upload flow + Image storage :שבוע 2 .2
Image Enhancement Service (Python) + Real-time UI :שבוע 3 .3
WebSocket integration + Enhancement pipeline :שבוע 4 .4
Segmentation service (Python) :שבוע 5 .5
Annotation interface :שבוע 6 .6
Character model + training :שבוע 7 .7
Word/Line models :שבוע 8 .8
Model fusion + API :שבוע 9 .9

Testing, optimization, deployment :שבוע 10 .10

תלותיות בין שלבים

שבוע 1: תשתית

Upload :שבוע 2

Enhancement :שבוע 3-4

Segmentation :שבוע 5

Annotation :שבוע 6

Character Model :שבוע 7

Word/Line Models :שבוע 8

Model Fusion :שבוע 9

Deployment :שבוע 10

	מערכת זיהוי כתב יד בעברית
	ארכיטקטורה כללית
	מבנה תיקיות
	שלב 1: הקמת תשתית בסיסית
	1.1 Backend - Express + Firebase
	1.2 Frontend - Next.js
	1.3 Firebase Setup

	שלב 2: שיפור וחידוד תמונות (CRITICAL)
	2.1 Image Enhancement Pipeline
	2.2 פילטרים זמינים
	2.3 ממשק שיפור תמונות (Real-time)
	2.4 תכונות ממשק המשתמש
	2.4.1 קומפוננטים נדרשים
	2.5 Presets מוכנים
	2.6 WebSocket לתצוגה בזמן אמת
	2.7 API Endpoints לשיפור תמונות
	2.8 שמירת הגדרות לכל תמונה
	2.9 מימוש טכני - Python Enhancement Service
	2.10 אופטימיזציה לביצועים

	שלב 3: עיבוד תמונות וסגמנטציה
	3.1 Image Processor
	3.2 מבנה נתונים ב-Firestore

	שלב 4: ממשק תיוג (Annotation Interface)
	4.1 תכונות הממשק
	4.2 Flow עבודה מלא

	שלב 5: מודלים היברידיים
	5.1 Character Model (EfficientNet-based)
	5.2 Word Model (CRNN)
	5.3 Line Model (TrOCR / Vision Transformer)
	5.4 שילוב המודלים

	שלב 6: אימון מתמשך
	6.1 Training Pipeline
	6.2 Data Augmentation
	6.3 Metrics Dashboard

	API Endpoints
	Authentication & Images
	Image Enhancement
	Annotation & Training
	OCR & Stats

	סדר עבודה מומלץ
	תלותיות בין שלבים

