
מערכת זיהוי כתב יד בעברית
ארכיטקטורה כללית
מבנה תיקיות
שלב 1: הקמת תשתית בסיסית

1.1 Backend - Express + Firebase
1.2 Frontend - Next.js
1.3 Firebase Setup

(CRITICAL) שלב 2: שיפור וחידוד תמונות
2.1 Image Enhancement Pipeline
פילטרים זמינים 2.2
(Real-time) ממשק שיפור תמונות 2.3
תכונות ממשק המשתמש 2.4
2.5 Presets מוכנים
2.6 WebSocket לתצוגה בזמן אמת
2.7 API Endpoints לשיפור תמונות
שמירת הגדרות לכל תמונה 2.8

שלב 3: עיבוד תמונות וסגמנטציה
3.1 Image Processor
Firestore-מבנה נתונים ב 3.2

(Annotation Interface) שלב 4: ממשק תיוג
תכונות הממשק 4.1
4.2 Flow עבודה

שלב 5: מודלים היברידיים
5.1 Character Model (EfficientNet-based)
5.2 Word Model (CRNN)
5.3 Line Model (TrOCR / Vision Transformer)
שילוב המודלים 5.4

שלב 6: אימון מתמשך
6.1 Training Pipeline
5.2 Metrics Dashboard

API Endpoints
סדר עבודה מומלץ

name: Hebrew OCR System overview: מערכת זיהוי כתב יד בעברית עם Next.js, Express,
Firebase ומודל ML היברידי. תומכת בזיהוי אותיות, מילים ושורות עם אימון שיתופי. todos:

id: setup-monorepo content: הקמת מבנה פרויקט - frontend, backend, ml-service
status: pending
id: firebase-setup content: הגדרת Firebase - Firestore, Storage, Auth status:
pending
id: backend-api content: בניית Express API עם routes/controllers/services status:
pending
id: frontend-upload content: ממשק העלאת תמונות ב-Next.js status: pending
id: image-enhancement content: שלב שיפור וחידוד תמונות עם תצוגה בזמן אמת status:
pending
id: segmentation-service content: שירות Python)לחלוקת תמונות)שורות/מילים/אותיות
status: pending
id: annotation-interface content: ממשק תיוג אינטראקטיבי status: pending
id: character-model content: מודל זיהוי אותיות (EfficientNet) status: pending
id: word-model content: מודל זיהוי מילים (CRNN) status: pending
id: line-model content: מודל זיהוי שורות (TrOCR) status: pending
id: model-fusion content: שילוב תוצאות מכל המודלים status: pending
id: training-pipeline content: צינור אימון מתמשך status: pending
id: deployment content: פריסה ופרסום ב-GitHub status: pending

מערכת זיהוי כתב יד בעברית

ארכיטקטורה כללית

Parse error on line 2:
... subgraph frontend [Frontend - Next.js]
-----------------------^
Expecting 'SEMI', 'NEWLINE', 'SPACE', 'EOF', 'GRAPH', 'DIR',
'TAGEND', 'TAGSTART', 'UP', 'DOWN', 'subgraph', 'end', 'SQE',
'PE', '-)', 'DIAMOND_STOP', 'MINUS', '--', 'ARROW_POINT',
'ARROW_CIRCLE', 'ARROW_CROSS', 'ARROW_OPEN',
'DOTTED_ARROW_POINT', 'DOTTED_ARROW_CIRCLE',
'DOTTED_ARROW_CROSS', 'DOTTED_ARROW_OPEN', '==',
'THICK_ARROW_POINT', 'THICK_ARROW_CIRCLE', 'THICK_ARROW_CROSS',
'THICK_ARROW_OPEN', 'PIPE', 'STYLE', 'LINKSTYLE', 'CLASSDEF',
'CLASS', 'CLICK', 'DEFAULT', 'NUM', 'PCT', 'COMMA', 'ALPHA',
'COLON', 'BRKT', 'DOT', 'PUNCTUATION', 'UNICODE_TEXT', 'PLUS',
'EQUALS', 'MULT', got 'SQS'

מבנה תיקיות

hebrew-ocr/
├── frontend/ # Next.js App
│ ├── src/
│ │ ├── app/ # App Router
│ │ ├── components/ # React Components
│ │ │ ├── upload/ # Upload components
│ │ │ ├── annotation/ # Annotation interface
│ │ │ └── common/ # Shared components
│ │ ├── hooks/ # Custom hooks
│ │ ├── services/ # API calls
│ │ └── types/ # TypeScript types
│ └── package.json
│
├── backend/ # Express API
│ ├── src/
│ │ ├── routes/ # API routes
│ │ ├── controllers/ # Request handlers
│ │ ├── services/ # Business logic
│ │ ├── middleware/ # Auth, validation
│ │ └── config/ # Firebase config
│ └── package.json
│
├── ml-service/ # Python ML Microservice
│ ├── models/ # Trained models
│ ├── services/
│ │ ├── segmentation.py # Image segmentation
│ │ ├── character_ocr.py # Character recognition
│ │ ├── word_ocr.py # Word recognition
│ │ └── line_ocr.py # Line recognition
│ ├── training/ # Training scripts
│ └── requirements.txt
│
└── shared/ # Shared types/utils

שלב 1: הקמת תשתית בסיסית

1.1 Backend - Express + Firebase

Firebase Admin SDK הגדרת
routes/controllers/services בסיסי עם API מבנה
Middleware לאימות ו-rate limiting
Upload endpoint לתמונות

1.2 Frontend - Next.js

Firebase Client SDK הגדרת
drag & drop ממשק העלאת תמונות עם
תצוגת תמונות שהועלו

1.3 Firebase Setup

Firestore collections: users, images, annotations, training_data
Storage buckets: uploads/, processed/, models/
Security rules

(CRITICAL) שלב 2: שיפור וחידוד תמונות

.שלב קריטי לפני אימון - שיפור איכות התמונות עם תצוגה בזמן אמת

2.1 Image Enhancement Pipeline

Parse error on line 1:
flowchart LR Ori
^
Expecting 'NEWLINE', 'SPACE', 'GRAPH', got 'ALPHA'

פילטרים זמינים 2.2

| פילטר | תיאור | פרמטרים |

|-------|--------|----------|

| Grayscale | המרה לגווני אפור | - |

| Denoise | הסרת רעש | strength: 1-10 |

| Contrast | שיפור ניגודיות | CLAHE clipLimit: 1-5 |

| Binarization | המרה לשחור-לבן | method: Otsu/Adaptive, blockSize, C |

| Deskew | תיקון הטיה | auto-detect angle |

| Sharpen | חידוד | kernel size, strength |

| Morphology | פעולות מורפולוגיות | dilate/erode, kernel size |

(Real-time) ממשק שיפור תמונות 2.3

interface EnhancementSettings {
 grayscale: boolean;
 denoise: {
 enabled: boolean;
 strength: number; // 1-10
 };
 contrast: {
 enabled: boolean;
 clipLimit: number; // 1-5
 tileSize: number; // 8-16
 };
 binarization: {
 enabled: boolean;
 method: 'otsu' | 'adaptive' | 'sauvola';
 blockSize: number; // 11-51 (odd)
 constant: number; // 2-20
 };
 deskew: {
 enabled: boolean;
 maxAngle: number; // max rotation degrees
 };
 sharpen: {
 enabled: boolean;
 strength: number; // 0.5-3
 };
}

interface EnhancementPreview {
 originalImage: string; // base64
 enhancedImage: string; // base64
 settings: EnhancementSettings;
 processingTime: number; // ms
 qualityScore: number; // 0-100
}

תכונות ממשק המשתמש 2.4

תצוגה בזמן אמת: כל שינוי בפרמטר מעדכן את התצוגה מיידית
תמונה מקורית לצד תמונה משופרת :Side-by-Side השוואה

Slider comparison: גרירה להשוואה על אותה תמונה
Zoom & Pan: התקרבות לפרטים קטנים
Undo/Redo: חזרה לשלבים קודמים
Presets: הגדרות מוכנות מראש לסוגי כתב יד שונים
Quality Score: ציון איכות אוטומטי לתמונה

2.5 Presets מוכנים

const ENHANCEMENT_PRESETS = {
 light_ink: {
 name: 'דיו בהיר',
 settings: { contrast: { clipLimit: 4 }, binarization: { constant: 5 } }
 },
 dark_background: {
 name: 'רקע כהה',
 settings: { binarization: { method: 'adaptive', blockSize: 31 } }
 },
 faded_document: {
 name: 'מסמך דהוי',
 settings: { contrast: { clipLimit: 5 }, sharpen: { strength: 2 } }
 },
 noisy_scan: {
 name: 'סריקה רועשת',
 settings: { denoise: { strength: 8 }, binarization: { method: 'sauvola' } }
 },
 tilted_image: {
 name: 'תמונה מוטה',
 settings: { deskew: { enabled: true, maxAngle: 15 } }
 }
};

2.6 WebSocket לתצוגה בזמן אמת

EnhancementServiceWebSocketFrontendUser

EnhancementServiceWebSocketFrontendUser

Latency target: under 200ms

Adjust slider

Send settings (debounced 100ms)

Process with new settings

Return enhanced preview

Update preview image

Show real-time result

2.7 API Endpoints לשיפור תמונות

| Method | Endpoint | תיאור |

|--------|----------|--------|

| POST | /api/enhance/preview | קבלת תצוגה מקדימה עם הגדרות |

| POST | /api/enhance/apply | החלת שיפורים ושמירה |

| GET | /api/enhance/presets | קבלת רשימת presets |

| POST | /api/enhance/auto | שיפור אוטומטי מומלץ |

| GET | /api/enhance/quality/:imageId | ציון איכות לתמונה |

שמירת הגדרות לכל תמונה 2.8

interface ImageEnhancementDoc {
 imageId: string;
 originalPath: string;
 enhancedPath: string;
 settings: EnhancementSettings;
 qualityBefore: number;
 qualityAfter: number;
 appliedAt: Timestamp;
}

שלב 3: עיבוד תמונות וסגמנטציה

3.1 Image Processor

קבלת תמונה וחיתוך אוטומטי
(Line Detection) זיהוי שורות
(Word Segmentation) זיהוי מילים בתוך שורות
(Character Segmentation) זיהוי אותיות בתוך מילים

Parse error on line 1:
flowchart LR Ima
^
Expecting 'NEWLINE', 'SPACE', 'GRAPH', got 'ALPHA'

Firestore-מבנה נתונים ב 3.2

// Image document
interface ImageDoc {
 id: string;
 userId: string;
 storagePath: string;
 status: 'uploaded' | 'processing' | 'ready' | 'annotated';
 segmentation: {
 lines: LineSegment[];
 words: WordSegment[];
 characters: CharSegment[];
 };
 createdAt: Timestamp;
}

// Annotation document
interface AnnotationDoc {
 id: string;
 imageId: string;
 userId: string;
 type: 'character' | 'word' | 'line';
 boundingBox: BoundingBox;
 label: string;
 confidence: number;
 isVerified: boolean;
 createdAt: Timestamp;
}

(Annotation Interface) שלב 4: ממשק תיוג

תכונות הממשק 4.1

bounding boxes תצוגת תמונה עם
מעבר בין מצבי תיוג: אותיות / מילים / שורות
מקלדת וירטואלית בעברית
אישור/תיקון תיוג אוטומטי
התקדמות ומשוב למשתמש

4.2 Flow עבודה

MLBackendFrontendUser

MLBackendFrontendUser

Batch training triggered

Upload Image

POST /api/images

Process Image

Segmentation + Initial Labels

Image with segments

Verify/Correct Labels

POST /api/annotations

Save to training_data

שלב 5: מודלים היברידיים

5.1 Character Model (EfficientNet-based)

Fine-tuned EfficientNet-B0
אותיות + סימני פיסוק 27

אימון על אותיות מבודדות

5.2 Word Model (CRNN)

CNN לחילוץ features
RNN (LSTM) לסדר אותיות
CTC Loss לאימון

5.3 Line Model (TrOCR / Vision Transformer)

Pre-trained transformer
Fine-tuning על שורות בעברית
תמיכה בהקשר מלא

שילוב המודלים 5.4

Parse error on line 1:
flowchart TB Inp
^
Expecting 'NEWLINE', 'SPACE', 'GRAPH', got 'ALPHA'

שלב 6: אימון מתמשך

6.1 Training Pipeline

מאומתות annotations איסוף
training batches יצירת
למודלים incremental אימון
model versions שמירת

5.2 Metrics Dashboard

דיוק לפי סוג)אות/מילה/שורה(
כמות נתונים מתויגים

התקדמות אימון

API Endpoints

| Method | Endpoint | תיאור |

|--------|----------|--------|

| POST | /api/auth/register | הרשמת משתמש |

| POST | /api/images/upload | העלאת תמונה |

| GET | /api/images/:id | קבלת תמונה עם segmentation |

| POST | /api/annotations | שמירת תיוג |

| GET | /api/annotations/:imageId | קבלת תיוגים לתמונה |

| POST | /api/ocr/recognize | זיהוי טקסט בתמונה |

| GET | /api/stats | סטטיסטיקות מערכת |

סדר עבודה מומלץ

(Firebase, Express, Next.js) שבוע 1: הקמת תשתית בסיסית .1
Upload flow + Image storage :שבוע 2 .2
Segmentation service (Python) :שבוע 3 .3
Annotation interface :שבוע 4 .4
Character model + training :שבוע 5 .5
Word/Line models :שבוע 6 .6
Model fusion + API :שבוע 7 .7
Testing, optimization, deployment :שבוע 8 .8

	מערכת זיהוי כתב יד בעברית
	ארכיטקטורה כללית
	מבנה תיקיות
	שלב 1: הקמת תשתית בסיסית
	1.1 Backend - Express + Firebase
	1.2 Frontend - Next.js
	1.3 Firebase Setup

	שלב 2: שיפור וחידוד תמונות (CRITICAL)
	2.1 Image Enhancement Pipeline
	2.2 פילטרים זמינים
	2.3 ממשק שיפור תמונות (Real-time)
	2.4 תכונות ממשק המשתמש
	2.5 Presets מוכנים
	2.6 WebSocket לתצוגה בזמן אמת
	2.7 API Endpoints לשיפור תמונות
	2.8 שמירת הגדרות לכל תמונה

	שלב 3: עיבוד תמונות וסגמנטציה
	3.1 Image Processor
	3.2 מבנה נתונים ב-Firestore

	שלב 4: ממשק תיוג (Annotation Interface)
	4.1 תכונות הממשק
	4.2 Flow עבודה

	שלב 5: מודלים היברידיים
	5.1 Character Model (EfficientNet-based)
	5.2 Word Model (CRNN)
	5.3 Line Model (TrOCR / Vision Transformer)
	5.4 שילוב המודלים

	שלב 6: אימון מתמשך
	6.1 Training Pipeline
	5.2 Metrics Dashboard

	API Endpoints
	סדר עבודה מומלץ

