
 מתקדם ומקיף לבינה מלאכותית JavaScript# מדריך

 #Advanced and Comprehensive JavaScript Training Guide for AI

 JavaScript-## מבוא מורחב ל

 ולמה זה חשוב? JavaScript### מה זה

JavaScript (הוא שפת תכנות דינמית, מפורשתinterpretedורב)- פרדיגמטית

(, אפליקציות מובייל Node.jsור לדפדפנים אך כיום רצה גם בשרתים)שפותחה במק

 ועוד.

 :JavaScript### היסטוריה של

 יום בנטסקייפ 10-ב JavaScript**: ברנדן אייך יוצר את 1995** -

- **1997 :**ECMAScript 1 - הסטנדרט הראשון

- **1999 :**ES3 - הוספתregex, try/catch, better string handling

- **2009 :**ES5 - strict mode, JSON, array methods

- **2015 :**ES6/ES2015 - :מהפכהclasses, modules, arrow functions,

let/const

 היום**: עדכונים שנתיים עם תכונות חדשות-2016** -

 :JavaScript### עקרונות הליבה של

 ####1 .Dynamic Typing - טיפוסים דינמיים

```javascript 

 // המשתנה יכול לשנות טיפוס בזמן ריצה

let variable = 42;        // number 

variable = "Hello";       // string 

variable = true;          // boolean 

variable = null;          // null 

variable = undefined;     // undefined 

variable = {};            // object 

variable = [];            // object (array) 

variable = function() {}; // function 

 

 // בדיקת טיפוס

console.log(typeof variable); // "function" 

``` 


 ####2 .First-Class Functions - פונקציות כאזרחים ראשונים

```javascript 

 // פונקציות הן ערכים שניתן להעביר, לשמור ולהחזיר

const myFunction = function(name{ ) 

    return `Hello ${name;`} 

;} 

 

 // פונקציה כפרמטר

function executeFunction(fn, value{ ) 

    return fn(value;) 

} 

 

const result = executeFunction(myFunction, "World;)" 

 

 // פונקציה שמחזירה פונקציה

function createMultiplier(factor{ ) 

    return function(number{ ) 

        return number * factor; 

    ;} 

} 

 



const double = createMultiplier(2;) 

console.log(double(5)); // 10 

``` 


 ####3 .Prototype-Based Inheritance - טיפוס-ירושה מבוססת אב

```javascript 

 prototype// כל אובייקט יש לו 

const person { = 

    name,"יוסי" : 

    greet: function{ )( 

        return {$ שלום, אני`this.name;`} 

    } 

;} 

 

 person-// יצירת אובייקט שיורש מ

const student = Object.create(person;) 

student.name ;"דני" = 

student.study = function{ )( 

    return `${this.name;`לומד } 

;} 

 

console.log(student.greet "שלום, אני דני" // ;))(- ירושה מ-person 

console.log(student.study"דני לומד" // ;))( 

``` 


 Detailed Variables -## משתנים מפורט

 כל הדרכים: -### הכרזה על משתנים


```javascript 

 //var - )!הדרך הישנה )הימנע 

var oldVariable ;"ישן" = 

var oldVariable !ניתן להכריז שוב"; // בעיה" = 

 

 //let - למשתנים שמשתנים 

let changeable ;"יכול להשתנות" = 

changeable ;"השתנה" = 

 //let changeable שגיאה!"; // לא ניתן להכריז שוב" = 

 

 //const - למשתנים קבועים 

const constant ;"לא יכול להשתנות" = 

 //constant שגיאה!"; // לא ניתן לשנות" = 

 

 //const  התוכן יכול להשתנות! -עם אובייקטים 

const person = { name;} "יוסי" : 

person.name י"; // זה עובד!= "דנ 

person.age = 25!זה גם עובד // ; 

 //person !זה לא יעבוד // ;}{ = 

 

 //const עם מערכים 

const numbers = [1, 2, 3;] 

numbers.push(4 עובד // ;)- משנה את התוכן 

numbers[0] = 10 משנה את התוכן -; // עובד 

 //numbers  רפרנסמשנה את ה -= ][; // לא עובד 

``` 


 ###⚠️ Hoisting - :תופעה מבלבלת


```javascript 

 // מה שאתה כותב:

console.log(myVar); // undefined )!לא שגיאה( 

console.log(myLet); // ReferenceError! 

console.log(myConst); // ReferenceError! 

 

var myVar = "Hello;" 

let myLet = "World;" 

const myConst ;"!" = 

 

 // מה שהמחשב "רואה":

var myVar; // undefined 

 //let myLet( בזיכרון אבל לא נגיש // ;Temporal Dead Zone) 

 //const myConst( בזיכרון אבל לא נגיש // ;Temporal Dead Zone) 

 

console.log(myVar); // undefined 

console.log(myLet); // ReferenceError! 

console.log(myConst); // ReferenceError! 

 

myVar = "Hello;" 

myLet = "World;" 

myConst ;"!" = 

``` 


 ###Temporal Dead Zone - :אזור מוות זמני

```javascript 

 //TDZ  עםlet/const 

console.log(typeof myLet); // ReferenceError! 

let myLet = "Hello;" 

 

 //TDZ בפונקציות 

function example{ )( 

    console.log(x); // ReferenceError! 

    let x = 1; 

} 

 

 //TDZ עם פרמטרים ברירת מחדל 

function defaultParams(a = b, b = 1{ ) 

    return a + b; 

} 

 //defaultParams(); // ReferenceError! b ןלא מוגדר עדיי 

``` 


 ###Block Scope vs Function Scope:


```javascript 

 //var - Function Scope 

function varExample{ )( 

    if (true{ ) 

        var x = 1; 

    } 

    console.log(x); // 1 - !נגיש מחוץ לבלוק 

} 

 

 //let/const - Block Scope 

function letExample)( { 

    if (true{ ) 

        let y = 1; 



        const z = 2; 

    } 

     //console.log(y); // ReferenceError! 

     //console.log(z); // ReferenceError! 

} 

 

 varלולאה עם  -// דוגמה קלאסית 

for (var i = 0; i < 3; i{ )++ 

    setTimeout(() => console.log(i), 100 ידפיס // ;)3, 3, 3 

} 

 

 let// פתרון עם 

for (let i = 0; i < 3; i{ )++ 

    setTimeout(() => console.log(i), 100 ידפיס // ;)2, 1, 0 

} 

``` 


 Detailed Data Types -## סוגי נתונים מפורט

 ###Primitive Types - :טיפוסים פרימיטיביים

 ####Number - מספרים

```javascript 

 // מספרים שלמים

let integer = 42; 

let negative = -17; 

let zero = 0; 

 

 // מספרים עשרוניים

let decimal = 3.14159; 

let scientific = 2.5e6; // 2,500,000 

let smallScientific = 1.5e-3; // 0.0015 

 

 // מספרים מיוחדים

let infinity = Infinity; 

let negativeInfinity = -Infinity; 

let notANumber = NaN; 

 

 // בדיקות מספרים

console.log(Number.isInteger(42)); // true 

console.log(Number.isInteger(42.0)); // true 

console.log(Number.isInteger(42.1)); // false 

 

console.log(Number.isFinite(42)); // true 

console.log(Number.isFinite(Infinity)); // false 

 

console.log(Number.isNaN(NaN)); // true 

console.log(Number.isNaN("hello")); // false  לא מספר, אבל לא(NaN) 

 

 // המרות מספרים

console.log(Number("42")); // 42 

console.log(Number("42.5")); // 42.5 

console.log(Number("hello")); // NaN 

console.log(parseInt("42px")); // 42 

console.log(parseFloat("42.5px")); // 42.5 

 

 // בסיסי מספרים

let binary = 0b1010; // 10 בבינארי 



let octal = 0o755; // 493 באוקטלי 

let hex = 0xFF; // 255 יבהקסדצימל 

 

 //BigInt - מספרים גדולים מאוד 

let bigNumber = 123456789012345678901234567890n; 

let anotherBig = BigInt("123456789012345678901234567890;)" 

``` 


 ####String - מחרוזות

```javascript 

 // דרכים ליצירת מחרוזות

let single ;'גרשיים בודדים' = 

let double ;"גרשיים כפולים" = 

let template ;`תבנית מחרוזת` = 

 

 //Escape characters 

let escaped שורה ראשונה" =\nשורה שנייה\t;"טאב 

let quote  :שלום\= "הוא אמר"\;"" 

let backslash  :נתיב" =C:\\Users\\Name;" 

 

 //Template literals - תבניות מחרוזת 

let name סי";= "יו 

let age = 25; 

let message {$ שלום` =name{$ בן ,}age;`} 

 

 // מחרוזות מרובות שורות

let multiline ` = 

 זוהי מחרוזת    

 מרובת שורות    

 עם הזחות    

;` 

 

 //Tagged template literals 

function highlight(strings, ...values{ ) 

    return strings.reduce((result, string, i{ >= ) 

        return result + string + (values[i] ? `<mark>${values[i]}</mark `>

;)'' : 

    ;)'' ,} 

} 

 

let highlighted = highlight{$ שלום`name{$ בן ,}age;`} 

 <"mark>25</mark<, בן >mark<יוסי>/mark// "שלום >

 

 בות// מתודות מחרוזת חשו

let text = "Hello World;" 

console.log(text.length); // 11 

console.log(text.charAt(0)); // "H" 

console.log(text.charCodeAt(0)); // 72 

console.log(text.indexOf("o")); // 4 

console.log(text.lastIndexOf("o")); // 7 

console.log(text.includes("World")); // true 

console.log(text.startsWith("Hello")); // true 

console.log(text.endsWith("World")); // true 

console.log(text.slice(0, 5)); // "Hello" 

console.log(text.substring(0, 5)); // "Hello" 

console.log(text.substr(0, 5)); // "Hello" (deprecated) 

console.log(text.toLowerCase()); // "hello world" 

console.log(text.toUpperCase()); // "HELLO WORLD" 



console.log(text.trimמסיר רווחים מהקצוות // ;))( 

console.log(text.replace("World", "JavaScript")); // "Hello JavaScript" 

console.log(text.split(" ")); // ["Hello", "World]" 

``` 


 ####Boolean - בוליאני

```javascript 

 // ערכים בוליאניים

let isTrue = true; 

let isFalse = false; 

 

 // המרה לבוליאני

console.log(Boolean(1)); // true 

console.log(Boolean(0)); // false 

console.log(Boolean("")); // false 

console.log(Boolean("hello")); // true 

console.log(Boolean(null)); // false 

console.log(Boolean(undefined)); // false 

console.log(Boolean(NaN)); // false 

console.log(Boolean([])); // true )!מערך ריק( 

console.log(Boolean({})); // true )!אובייקט ריק( 

 

 קיצור עם !!// 

console.log(!!"hello"); // true 

console.log(!!0); // false 

``` 


 ###⚠️ Truthy ו-Falsy - :מושג קריטי


```javascript 

 בהקשר בוליאני(: false)נחשבים  Falsy// ערכים 

if (false) { } // false 

if (0) { } // 0 

if (-0) { } // -0 

if (0n) { } // BigInt 0 

if מחרוזת ריקה // } { )""( 

if (null) { } // null 

if (undefined) { } // undefined 

if (NaN) { } // NaN 

 

 :Truthy// כל השאר הם 

if (true) { console.log("true} ;)" 

if (1) { console.log} ;)"מספר חיובי"( 

if (-1) { console.log} ;)"מספר שלילי"( 

if ("0") { console.log 0)"מחרוזת עם // } ;)"truthy! 

if ("false") { console.log מחרוזת עם"(false"); } // truthy! 

if ([]) { console.log // } ;)"מערך ריק"(truthy! 

if ({}) { console.log // } ;)"אובייקט ריק"(truthy! 

if (function(){}) { console.log"פונקציה"( // } ;)truthy! 

 

 // שימושים מעשיים

function greet(name{ ) 

    if (name בדיקה אם // { )name קיים ולא ריק 

        return {$ שלום`name;`} 

    } 

    return ;"שלום אורח" 

} 

 



 default values// עם 

function greetWithDefault(name { )"אורח" = 

    return `{$ שלוםname;`} 

} 

 

 logical operators// עם 

function greetWithOr(name{ ) 

    return {$ שלום`name ;`}"אורח" || 

} 

``` 


 ###Null vs Undefined - :הבדל חשוב


```javascript 

 //undefined - משתנה שהוכרז אבל לא קיבל ערך 

let undefinedVar; 

console.log(undefinedVar); // undefined 

console.log(typeof undefinedVar); // "undefined" 

 

 //null - ערך ריק במכוון 

let nullVar = null; 

console.log(nullVar); // null 

console.log(typeof nullVar); // "object)!באג היסטורי( " 

 

 // השוואות

console.log(null == undefined); // true )השוואה רגילה( 

console.log(null === undefined); // false )השוואה מדויקת( 

 

 // בדיקות

console.log(null == null); // true 

console.log(undefined == undefined); // true 

console.log(null === null); // true 

console.log(undefined === undefined); // true 

 

 // שימושים מעשיים

function findUser(id{ ) 

 (undefined)לא  null// אם לא נמצא משתמש, החזר     

    return users.find(user => user.id === id) || null; 

} 

 

 // בדיקה אם ערך קיים

if (value != null בודק גם // { )null  וגםundefined 

 ם// הערך קיי    

} 

 

if (value !== null && value !== undefinedבדיקה מפורשת // { ) 

 // הערך קיים    

} 

 

 nullish coalescing (ES2020)// עם 

const result = value  ברירת מחדל"; // רק אם" ??null  אוundefined 

``` 


 Comprehensive Functions -## פונקציות מקיף

 שונות להגדיר פונקציות: ### דרכים

 ####1 .Function Declaration - הכרזת פונקציה


```javascript 

 (hoisted// מוגדרת בכל הקובץ )

function regularFunction(name, age = 0{ ) 

    return {$ שלום`name{$ בן ,}age;`} 

} 

 

 // ניתן לקרוא לפני ההגדרה:

console.log(regularFunction!עובד // ;))"יוסי"( 

 

 // עם פרמטרים מרובים

function sum(a, b, c{ ) 

    return a + b + c; 

} 

 

 מוקדם return// עם 

function checkAge(age{ ) 

    if (age < 0{ ) 

        return ;"גיל לא תקין" 

    } 

    if (age < 18{ ) 

        return ;"קטין" 

    } 

    return ;"בוגר" 

} 

``` 


 ####2 .Function Expression - ביטוי פונקציה

```javascript 

 חייב להגדיר לפני השימוש - hoisted// לא 

const functionExpression = function(name{ ) 

    return {$ שלום`name;`} 

;} 

 

 //Named function expression 

const namedExpression = function greet(name{ ) 

 ' זמין רק בתוך הפונקציהgreet// השם '    

    if (!name{ ) 

        return greetאורח"(; // רקורסיה"( 

    } 

    return {$ שלום`name;`} 

;} 

 

 //IIFE - Immediately Invoked Function Expression 

(function{ )( 

    console.log;)"פונקציה שרצה מיד"( 

;)()} 

 

 //IIFE עם פרמטרים 

(function(message{ ) 

    console.log(message;) 

 {()"הודעה מיידית"(;

``` 


 ####3 .Arrow Functions - פונקציות חץ

```javascript 

 // תחביר בסיסי

const arrowFunction = (name{ >= ) 

    return {$ שלום`name;`} 



;} 

 

 מרומז return -// תחביר קצר 

const shortArrow = name {$ שלום` >=name;`} 

 

 // ללא פרמטרים

const noParams ;"שלום עולם" >= )( = 

 

 // פרמטר יחיד ללא סוגריים

const singleParam = name {$ שלום` >=name;`} 

 

 // פרמטרים מרובים

const multipleParams = (name, age{$ שלום` >= )name{$ בן ,}age;`} 

 

 צריך סוגריים -// החזרת אובייקט 

const returnObject = name => ({ name: name, greeting{$ שלום` :name;)} `} 

 

 // פונקציה מורכבת

const complexArrow = (numbers{ >= ) 

    const sum = numbers.reduce((acc, num) => acc + num, 0;) 

    const average = sum / numbers.length; 

    return { sum, average ;} 

;} 

``` 


 הבדלים חשובים בין סוגי הפונקציות: ️⚠###

 ####this Binding - קישור הקונטקסט

```javascript 

const person { = 

    name,"יוסי" : 

     

 personמצביע על  this -רגילה  // פונקציה    

    regularMethod: function{ )( 

        console.log(this.name"יוסי" // ;) 

         

 window/globalמצביע על  this -// פונקציה פנימית         

        function innerFunction{ )( 

            console.log(this.name); // undefined 

        } 

        innerFunction;)( 

         

 bind// פתרון עם         

        const boundFunction = innerFunction.bind(this;) 

        boundFunction"יוסי" // ;)( 

         

 arrow function// פתרון עם         

        const arrowInner { >= )( = 

            console.log(this.name "יוסי" // ;)- יורש מההקשר החיצוני 

        ;} 

        arrowInner;)( 

    ,} 

     

     //Arrow function - this מצביע על הקונטקסט החיצוני 

    arrowMethod{ >= )( : 

        console.log(this.name); // undefined  או(window.name) 

    ,} 

     



 arrow function// פונקציה שמחזירה     

    createGreeter: function{ )( 

        return { >= )( 

            console.log{$ שלום`(this.name"שלום יוסי" // ;)`} 

        ;} 

    } 

;} 

 

person.regularMethod ,"יוסי" // ;)(undefinedוסי", "יוסי", "י 

person.arrowMethod(); // undefined 

 

const greeter = person.createGreeter;)( 

greeter"שלום יוסי" // ;)( 

``` 


 ####Arguments Object vs Rest Parameters

```javascript 

 //arguments - )אובייקט דמוי מערך )ישן 

function oldWay{ )( 

    console.log(arguments.length;) 

    console.log(arguments[0;)] 

     

 // המרה למערך    

    const argsArray = Array.from(arguments;) 

 // או    

    const argsArray2 = Array.prototype.slice.call(arguments;) 

     

 !arrow functions// לא עובד עם     

} 

 

 //Rest parameters - )מערך אמיתי )מודרני 

function newWay(...args{ ) 

    console.log(args.length;) 

    console.log(args[0;)] 

     

 // זה כבר מערך!    

    args.forEach(arg => console.log(arg;)) 

    args.map(arg => arg * 2;) 

     

 arrow functions// עובד גם עם     

} 

 

const arrowWithRest = (...args{ >= ) 

    return args.reduce((sum, num) => sum + num, 0;) 

;} 

 

 // שילוב עם פרמטרים רגילים

function mixedParams(first, second, ...rest{ ) 

    console.log ,":ראשון"(first;) 

    console.log ,":שני"(second;) 

    console.log ,":השאר"(rest;) 

} 

 

mixedParams(1, 2, 3, 4, 5;) 

 1// ראשון: 

 2// שני: 

 [5, 4, 3// השאר: ]

``` 


 ### פרמטרים מתקדמים:

 ####Default Parameters - פרמטרים ברירת מחדל

```javascript 

 // בסיסי

function greet(name  ,"אורח" =age = 0{ ) 

    return {$ שלום`name{$ בן ,}age;`} 

} 

 

 // עם ביטויים

function createUser(name, timestamp = Date.now{ ))( 

    return { name, createdAt: timestamp ;} 

} 

 

 // עם פונקציות

function getDefaultName{ )( 

    return ;"משתמש אנונימי" 

} 

 

function register(name = getDefaultName{ ))( 

    return {$ :נרשם`name;`} 

} 

 

 // פרמטרים תלויים

function createRect(width, height = width{ ) 

    return { width, height ;} 

} 

 

 destructuring// עם 

function processUser({ name  ,"אורח" =age = 0 { )}{ = } 

    return `${name} (${age;`)} 

} 

 

processUser( אורח" // ;)(0") 

processUser({ name( יוסי" // ;)} "0: "יוסי") 

processUser({ name ,"דנה" :age: 25 ( דנה" // ;)}25") 

``` 


 ####Destructuring Parameters - פירוק פרמטרים

```javascript 

 // פירוק אובייקט

function createUser({ name, email, age = 18 { )} 

    return { 

        name, 

        email, 

        age, 

        id: Math.random)( 

    ;} 

} 

 

createUser({ name ,"יוסי" :email: "yossi@example.com;)} " 

 

 // פירוק מערך

function processCoordinates([x, y, z = 0{ )] 

    return { x, y, z ;} 

} 

 



processCoordinates([10, 20]); // { x: 10, y: 20, z: 0 } 

 

 // פירוק מקונן

function processOrder {( 

    user: { name, email  ,} 

    items , 

    shipping: { address, method = "standard } " 

{ )} 

    return { 

        customerName: name, 

        customerEmail: email, 

        itemCount: items.length, 

        shippingAddress: address, 

        shippingMethod: method 

    ;} 

} 

``` 


 ###Higher-Order Functions - :פונקציות מסדר גבוה


```javascript 

 // פונקציה שמקבלת פונקציה כפרמטר

function executeOperation(a, b, operation{ ) 

    return operation(a, b;) 

} 

 

const add = (x, y) => x + y; 

const multiply = (x, y) => x * y; 

 

console.log(executeOperation(5, 3, add)); // 8 

console.log(executeOperation(5, 3, multiply)); // 15 

 

 נקציה שמחזירה פונקציה// פו

function createMultiplier(factor{ ) 

    return function(number{ ) 

        return number * factor; 

    ;} 

} 

 

const double = createMultiplier(2;) 

const triple = createMultiplier(3;) 

 

console.log(double(5)); // 10 

console.log(triple(5)); // 15 

 

 //Currying - פונקציה שמחזירה פונקציות 

function curry(fn{ ) 

    return function curried(...args{ ) 

        if (args.length >= fn.length{ ) 

            return fn.apply(this, args;) 

         }else { 

            return function(...args2{ ) 

                return curried.apply(this, args.concat(args2;)) 

            ;} 

        } 

    ;} 

} 

 



const add3 = (a, b, c) => a + b + c; 

const curriedAdd = curry(add3;) 

 

console.log(curriedAdd(1)(2)(3)); // 6 

console.log(curriedAdd(1, 2)(3)); // 6 

console.log(curriedAdd(1)(2, 3)); // 6 

 

 //Partial Application 

function partial(fn, ...presetArgs{ ) 

    return function(...laterArgs{ ) 

        return fn(...presetArgs, ...laterArgs;) 

    ;} 

} 

 

const add10 = partial(add, 10;) 

console.log(add10(5)); // 15 

``` 


 ###Function Methods - :מתודות פונקציה


```javascript 

const person { = 

    name,"יוסי" : 

    greet: function(greeting, punctuation{ ) 

        return `${greeting} ${this.name}${punctuation;`} 

    } 

;} 

 

 //call -  מיידית עם קריאהthis מוגדר 

console.log(person.greet.call({ name ;))"!" ,"דנה" {, "שלום" : 

 // "שלום דנה!"

 

 //apply -  כמוcall אבל עם מערך פרמטרים 

console.log(person.greet.apply({ name ;))]"?" ,"מיכל" {, ]"היי" : 

 // "היי מיכל?"

 

 //bind - שה עם יצירת פונקציה חדthis קבוע 

const greetDana = person.greet.bind({ name;)} "דנה" : 

console.log(greetDana"!שלום דנה" // ;))"!" ,"שלום"( 

 

 //bind עם פרמטרים חלקיים 

const greetDanaHello = person.greet.bind({ name;)"דנה" {, "שלום" : 

console.log(greetDanaHello ;))"!"("!שלום דנה" // 

 

 event handlers -// שימוש מעשי 

class Button { 

    constructor(element{ ) 

        this.element = element; 

        this.clickCount = 0; 

         

         //bind  כדי לשמור עלthis 

        this.element.addEventListener('click', 

this.handleClick.bind(this;)) 

    } 

     

    handleClick{ )( 

        this.clickCount;++ 

        console.log{$ נלחץ`(this.clickCount;)`פעמים } 



    } 

} 

``` 


 Comprehensive Objects -## אובייקטים מקיף

 כל הדרכים: -### יצירת אובייקטים

 ####1 .Object Literal - הדרך הפשוטה

```javascript 

 // בסיסי

const person { = 

    name,"יוסי" : 

    age: 25, 

    city"תל אביב" : 

;} 

 

 // עם מתודות

const calculator { = 

    result: 0, 

     

    add: function(number{ ) 

        this.result += number; 

        return this; // method chaining 

    ,} 

     

    multiply: function(number{ ) 

        this.result *= number; 

        return this; 

    ,} 

     

    get value{ )( 

        return this.result; 

    ,} 

     

    reset() { // shorthand method 

        this.result = 0; 

        return this; 

    } 

;} 

 

calculator.add(5).multiply(2).add(3;) 

console.log(calculator.value); // 13 

 

 //Computed property names 

const propertyName = "dynamicProperty;" 

const obj { = 

    [propertyName,"ערך דינמי" :] 

    {$`[propertyName}2"ערך נוסף" :]` 

;} 

 

 //Property shorthand 

const name ;"יוסי" = 

const age = 25; 

const user = { name, age זהה ל // ;}- {name: name, age: age } 

``` 


 ####2 .Constructor Functions - פונקציות בנאי


```javascript 

function Person(name, age{ ) 

    this.name = name; 

    this.age = age; 

     

 (instanceיוצרת עותק לכל  -// מתודה )לא מומלץ     

    this.greet = function{ )( 

        return {$ שלום`this.name;`} 

    ;} 

} 

 

 )מומלץ( prototype-// מתודות ב

Person.prototype.introduce = function{ )( 

    return {$ אני`this.name{$ בן ,}this.age;`} 

;} 

 

Person.prototype.haveBirthday = function{ )( 

    this.age;++ 

    return {$ יום הולדת שמח! עכשיו בן`this.age;`} 

;} 

 

 instances// יצירת 

const person1 = new Person ,"(;25)"יוסי 

const person2 = new Person ,"(;30)"דנה 

 

console.log(person1.introduce אני יוסי, בן" // ;))(25" 

console.log(person2.haveBirthday יום הולדת שמח! עכשיו בן" // ;))(31" 

``` 


 ####3 .Object.create)(- יצירה עםprototype מוגדר

```javascript 

const personPrototype { = 

    init: function(name, age{ ) 

        this.name = name; 

        this.age = age; 

        return this; 

    ,} 

     

    greet: function{ )( 

        return {$ שלום`this.name;`} 

    } 

;} 

 

const person = Object.create(personPrototype;) 

person.init ,"(;25)"יוסי 

 

 // או בשורה אחת

const person2 = Object.create(personPrototype).init ,"(;30)"דנה 

 

 מוגדרות properties// עם 

const person3 = Object.create(personPrototype{ , 

    name{ : 

        value,"מיכל" : 

        writable: true, 

        enumerable: true, 

        configurable: true 

    ,} 

    age{ : 



        value: 28, 

        writable: true, 

        enumerable: true, 

        configurable: true 

    } 

;)} 

``` 


 ####4 .Classes - (המודרניES6)+

```javascript 

class Person { 

     //Constructor 

    constructor(name, age{ ) 

        this.name = name; 

        this.age = age; 

        this._id = Math.random(); // private-like property 

    } 

     

     //Method 

    greet{ )( 

        return {$ שלום`this.name;`} 

    } 

     

     //Static method 

    static species{ )( 

        return "Homo sapiens;" 

    } 

     

     //Getter 

    get info{ )( 

        return `${this.name{$ בן ,}this.age;`} 

    } 

     

     //Setter 

    set age(newAge{ ) 

        if (newAge >= 0 && newAge <= 150{ ) 

            this._age = newAge; 

         }else { 

            throw new Error;)"גיל לא תקין"( 

        } 

    } 

     

    get age{ )( 

        return this._age; 

    } 

     

     //Private method (ES2022) 

    #calculateSomething{ )( 

        return this._id * 100; 

    } 

     

     //Public method that uses private method 

    getCalculation{ )( 

        return this.#calculateSomething;)( 

    } 

} 

 

const person = new Person ,"(;25)"יוסי 



console.log(person.greet"שלום יוסי" // ;))( 

console.log(Person.species()); // "Homo sapiens" 

console.log(person.info יוסי, בן" // ;)25" 

``` 


 :Property Access -### גישה לתכונות


```javascript 

const person { = 

    name,"יוסי" : 

    age: 25, 

    "full-name,"יוסי כהן" :" 

 ": "מספר כמפתח"123"    

;} 

 

 //Dot notation 

console.log(person.name"יוסי" // ;) 

console.log(person.age); // 25 

 

 //Bracket notation 

console.log(person["name"יוסי" // ;)]" 

console.log(person["full-name "יוסי כהן" // ;)]"- חובה עם מקף 

console.log(person["123"מספר כמפתח" // ;)]" 

 

 // גישה דינמית

const property = "age;" 

console.log(person[property]); // 25 

 

 // עם משתנים

const prefix = "full;" 

console.log(person[prefix + "-name"יוסי כהן" // ;)]" 

 

 //Optional chaining (ES2020) 

const user { = 

    profile{ : 

        name,"יוסי" : 

        address{ : 

            city"תל אביב" : 

        } 

    } 

;} 

 

console.log(user?.profile?.name"יוסי" // ;) 

console.log(user?.profile?.address?.city"תל אביב" // ;) 

console.log(user?.profile?.phone?.number); // undefined )!לא שגיאה( 

 

 // עם מתודות

user?.profile?.getNameלא יקרא לפונקציה אם לא קיימת // ;)(.? 

 

 // עם מערכים

const users [ = 

     {name,} "יוסי" : 

    null, 

     {name} "דנה" : 

;] 

 

console.log(users?.[0]?.name"יוסי" // ;) 

console.log(users?.[1]?.name); // undefined 



console.log(users?.[10]?.name); // undefined 

``` 


 ### הוספה, שינוי ומחיקה של תכונות:


```javascript 

const person = { name;} "יוסי" : 

 

 // הוספת תכונות

person.age = 25; 

person["city;"תל אביב" = ]" 

person["full-name;"יוסי כהן" = ]" 

 

 // שינוי תכונות

person.age = 26; 

person["city;"חיפה" = ]" 

 

 // מחיקת תכונות

delete person.age; 

delete person["full-name;]" 

 

 // בדיקת קיום תכונות

console.log("name" in person); // true 

console.log("age" in person); // false 

console.log(person.hasOwnProperty("name")); // true 

console.log(person.hasOwnProperty("toString")); // false )ירושה( 

 

 //Object.hasOwn )(- חדש יותר 

console.log(Object.hasOwn(person, "name")); // true 

 

 undefined// בדיקה אם תכונה 

console.log(person.age === undefined); // true 

console.log(person.nonExistent === undefined); // true - !לא מבדיל 

 

 // בדיקה נכונה

if ("age" in person{ ) 

    console.log("age ;)"קיים 

 }else { 

    console.log("age ;)"לא קיים 

} 

``` 


 בעיה נפוצה: -העתקת אובייקטים ️⚠###


```javascript 

const original { = 

    name,"יוסי" : 

    hobbies,]"קריאה", "ספורט"[ : 

    address{ : 

        city,"תל אביב" : 

        street 1: "הרצל" 

    } 

;} 

 

 רק הרמה הראשונה -// העתקה שטחית 

const shallowCopy1 = { ...original ;} 

const shallowCopy2 = Object.assign({}, original;) 

 



 י במערך או אובייקט פנימי משפיע על המקור!// בעיה: שינו

shallowCopy1.hobbies.push;)"בישול"( 

shallowCopy1.address.city ;"חיפה" = 

 

console.log(original.hobbies ]"קריאה", "ספורט", "בישול"[ // ;)- !השתנה 

console.log(original.address.city "חיפה" // ;)- !השתנה 

 

 כל הרמות -עמוקה  // העתקה

const deepCopy1 = JSON.parse(JSON.stringify(original;)) 

 Date, RegExp, undefined, Symbol// בעיה: לא עובד עם פונקציות, 

 

 )חדש( structuredClone// העתקה עמוקה עם 

const deepCopy2 = structuredClone(original;) 

 

 // העתקה עמוקה ידנית

function deepClone(obj{ ) 

    if (obj === null || typeof obj !== "object{ )" 

        return obj; 

    } 

     

    if (obj instanceof Date{ ) 

        return new Date(obj.getTime;))( 

    } 

     

    if (obj instanceof Array{ ) 

        return obj.map(item => deepClone(item;)) 

    } 

     

    if (typeof obj === "object{ )" 

        const cloned ;}{ = 

        for (let key in obj{ ) 

            if (obj.hasOwnProperty(key{ )) 

                cloned[key] = deepClone(obj[key;)] 

            } 

        } 

        return cloned; 

    } 

} 

 

const deepCopy3 = deepClone(original;) 

``` 


 ###Object Methods - :מתודות אובייקט


```javascript 

const person { = 

    name,"יוסי" : 

    age: 25, 

    city"תל אביב" : 

;} 

 

 //Object.keys )(- מערך של מפתחות 

const keys = Object.keys(person); // ["name", "age", "city]" 

 

 //Object.values )(- מערך של ערכים 

const values = Object.values(person ,"יוסי"[ // ;)תל אביב"[25" , 

 

 //Object.entries )(- ]מערך של ]מפתח, ערך 



const entries = Object.entries(person ;) 

"[[ //name""[ ,]"יוסי" ,age", 25], ["city]]"תל אביב" ," 

 

 //Object.fromEntries )(- מ-entries חזרה לאובייקט 

const newObj = Object.fromEntries(entries;) 

 

 //Object.assign )(- מיזוג אובייקטים 

const defaults = { theme: "light", language: "he;} " 

const userPrefs = { theme: "dark;} " 

const settings = Object.assign({}, defaults, userPrefs;) 

 { //theme: "dark", language: "he} " 

 

 )מודרני יותר( spread operator// עם 

const settings2 = { ...defaults, ...userPrefs ;} 

 

 //Object.freeze )(- הקפאת אובייקט 

const frozenObj = Object.freeze({ name;)} "יוסי" : 

 //frozenObj.name ( דנה"; // לא יעבוד" =silent fail או שגיאה ב-strict 

mode) 

 

 //Object.seal )(- איטום אובייקט 

const sealedObj = Object.seal({ name ,"יוסי" :age: 25 ;)} 

sealedObj.name  ת קיימותשינוי תכונו -= "דנה"; // עובד 

 //sealedObj.city  הוספת תכונות חדשות -= "חיפה"; // לא עובד 

 //delete sealedObj.age מחיקת תכונות -; // לא עובד 

 

 //Object.preventExtensions )(- מניעת הרחבה 

const nonExtensible = Object.preventExtensions({ name;)} "יוסי" : 

nonExtensible.name דנה"; // עובד" = 

 //nonExtensible.age = 25לא עובד // ; 

 

 // בדיקות מצב

console.log(Object.isFrozen(frozenObj)); // true 

console.log(Object.isSealed(sealedObj)); // true 

console.log(Object.isExtensible(nonExtensible)); // false 

``` 


. האם תרצה שאמשיך עם החלקים הבאים JavaScript-דריך המתקדם לזהו חלק נרחב מהמ

 , וכו'(?Promises, DOM)מערכים,

 Advanced Arrays -## מערכים מתקדמים

 כל הדרכים: -### יצירת מערכים


```javascript 

 // דרכים ליצירת מערכים

const arr1 = [1, 2, 3]; // literal notation 

const arr2 = new Array(1, 2, 3); // constructor 

const arr3 = new Array(5 מערך עם // ;)מקומות ריקים 5 

const arr4 = Array.of(1, 2, 3תמיד יוצר מערך עם הערכים // ;) 

const arr5 = Array.from("hello"); // ["h", "e", "l", "l", "o]" 

const arr6 = Array.from({length: 3}, (_, i) => i); // [0, 1, 2] 

 

 //Typed Arrays - מערכים מטיפוס ספציפי 

const int8Array = new Int8Array([1, 2, 3]); // 8-bit integers 

const float32Array = new Float32Array([1.1, 2.2, 3.3]); // 32-bit floats 

const uint8Array = new Uint8Array(10); // 10 unsigned 8-bit integers 

 



 // מערכים מקוננים

const matrix [ = 

    [1 ,2 ,3,] 

    [4 ,5 ,6,] 

    [7 ,8 ,9] 

;] 

 

 // מערך מעורב

const mixed = [1, "hello", true, null, {name[ ,}"3, 2, 1: "יוסי;]] 

``` 


 ### מתודות מערך מתקדמות:

 (:Mutatingערך)#### מתודות שמשנות את המ

```javascript 

const fruits ;]"תפוח", "בננה", "תפוז"[ = 

 

 // הוספה והסרה

fruits.pushאבטיח"(; // הוספה לסוף"( 

fruits.unshiftתות"(; // הוספה להתחלה"( 

const lastFruit = fruits.popהסרה מהסוף // ;)( 

const firstFruit = fruits.shiftרה מההתחלה)(; // הס 

 

 //splice - הסרה והוספה במקום ספציפי 

const removed = fruits.splice(1, 2;)"מנגו", "פפאיה" , 

 פריטים, הוסף "מנגו" ו"פפאיה" 2, הסר 1// מהאינדקס 

 

 // מיון

const numbers = [3, 1, 4, 1, 5, 9;] 

numbers.sort[ :9, 5, 4, 3, 1, 1)(; // מיון לקסיקוגרפי] 

numbers.sort((a, b) => a - bמיון מספרי עולה // ;) 

numbers.sort((a, b) => b - aמיון מספרי יורד // ;) 

 

 // הפיכה

numbers.reverseהופך את סדר האלמנטים // ;)( 

 

 // מילוי

const zeros = new Array(5).fill(0); // [0, 0, 0, 0, 0] 

const pattern = [1, 2, 3;] 

pattern.fill("x", 1, 2); // [1, "x", 3 ]-  2עד  1מילוי מאינדקס 

 

 //copyWithin - העתקה פנימית 

const arr = [1, 2, 3, 4, 5;] 

arr.copyWithin(0, 3, 4); // [4, 2, 3, 4, 5 ]-  0לאינדקס  3-4העתק מאינדקס 

``` 


 :(Non-mutating#### מתודות שלא משנות את המערך)

```javascript 

const numbers = [1, 2, 3, 4, 5;] 

 

 //map - יצירת מערך חדש עם שינוי 

const doubled = numbers.map(num => num * 2); // [2, 4, 6, 8, 10] 

const strings = numbers.map(num {$ מספר` >=num;)`} 

 

 //filter - סינון 

const evens = numbers.filter(num => num % 2 === 0); // [2, 4] 

const odds = numbers.filter(num => num % 2 === 1); // [1, 3, 5] 

 



 //reduce - צמצום לערך יחיד 

const sum = numbers.reduce((acc, num) => acc + num, 0); // 15 

const product = numbers.reduce((acc, num) => acc * num, 1); // 120 

 

 //reduceRight - צמצום מימין לשמאל 

const rightSum = numbers.reduceRight((acc, num) => acc + num, 0;) 

 

 //find - מציאת אלמנט ראשון 

const found = numbers.find(num => num > 3); // 4 

const foundIndex = numbers.findIndex(num => num > 3); // 3 

 

 //some - בדיקה אם לפחות אחד מתאים 

const hasEven = numbers.some(num => num % 2 === 0); // true 

 

 //every - בדיקה אם כולם מתאימים 

const allPositive = numbers.every(num => num > 0); // true 

 

 //includes - בדיקת קיום 

const hasThree = numbers.includes(3); // true 

 

 //indexOf / lastIndexOf - מציאת אינדקס 

const index = numbers.indexOf(3); // 2 

const lastIndex = numbers.lastIndexOf(3); // 2 

 

 //slice - )חיתוך )לא משנה את המקור 

const sliced = numbers.slice(1, 4); // [2, 3, 4] 

const fromIndex = numbers.slice(2); // [3, 4, 5] 

const lastTwo = numbers.slice(-2); // [4, 5] 

 

 //concat - חיבור מערכים 

const moreNumbers = [6, 7, 8;] 

const combined = numbers.concat(moreNumbers); // [1, 2, 3, 4, 5, 6, 7, 8] 

 

 //join - הפיכה למחרוזת 

const joined = numbers.join(", "); // "1, 2, 3, 4, 5" 

const noSeparator = numbers.join(""); // "12345" 

``` 


 +(:ES6### מתודות מערך מודרניות)


```javascript 

const numbers = [1, 2, 3, 4, 5;] 

 

 //Array.from  עםmapping 

const doubled = Array.from(numbers, x => x * 2); // [2, 4, 6, 8, 10] 

 

 //flatMap - map + flat 

const nested = [[1, 2], [3, 4], [5;]] 

const flattened = nested.flatMap(arr => arr.map(x => x * 2)); // [2, 4, 

6, 8, 10] 

 

 //flat - פיתוח מערכים מקוננים 

const deepNested = [1, [2, 3], [4, [5, 6;]]] 

const flat1 = deepNested.flat(); // [1, 2, 3, 4, [5, 6]] 

const flat2 = deepNested.flat(2); // [1, 2, 3, 4, 5, 6] 

const flatAll = deepNested.flat(Infinityפיתוח מלא // ;) 

 

 //entries, keys, values 



for (const [index, value] of numbers.entries{ ))( 

    console.log(`${index}: ${value;)`} 

} 

 

for (const index of numbers.keys{ ))( 

    console.log{$ :אינדקס`(index;)`} 

} 

 

for (const value of numbers.values{ ))( 

    console.log{$ :ערך`(value;)`} 

} 

 

 //at )(- ( גישה עם אינדקסים שלילייםES2022) 

console.log(numbers.at(-1)); // 5 )האחרון( 

console.log(numbers.at(-2)); // 4 )הלפני אחרון( 

``` 


 ### דוגמאות מעשיות למערכים:

 #### עיבוד נתונים

```javascript 

const users [ = 

     {name ,"יוסי" :age: 25, city ,"תל אביב" :salary: 15000 ,} 

     {name ,"דנה" :age: 30, city ,"חיפה" :salary: 18000 ,} 

     {name ,"מיכל" :age: 28, city ,"תל אביב" :salary: 16000 ,} 

     {name ,"אבי" :age: 35, city ,"ירושלים" :salary: 20000 } 

;] 

 

 // סינון וחישוב

const tlvUsers = users.filter(user => user.city ;)"תל אביב" === 

const highEarners = users.filter(user => user.salary > 16000;) 

const averageAge = users.reduce((sum, user) => sum + user.age, 0) / 

users.length; 

 

 // קיבוץ לפי עיר

const usersByCity = users.reduce((acc, user{ >= ) 

    if (!acc[user.city{ )] 

        acc[user.city ];][ = 

    } 

    acc[user.city].push(user;) 

    return acc; 

;)}{ ,} 

 

 // מיון מורכב

const sortedUsers = users.sort((a, b{ >= ) 

 // מיון לפי עיר ואז לפי שכר    

    if (a.city !== b.city{ ) 

        return a.city.localeCompare(b.city;) 

    } 

    return b.salary - a.salary; 

;)} 

 

 // שרשור פעולות

const result = users 

    .filter(user => user.age > 25) 

    .map(user => ({ ...user, bonus: user.salary * 0.1 ))} 

    .sort((a, b) => b.salary - a.salary) 

    .slice(0, 2;) 



``` 


 API#### עבודה עם

```javascript 

 API// עיבוד תגובות 

async function processApiData{ )( 

    const responses = await Promise.all[( 

        fetch('/api/users,)' 

        fetch('/api/posts,)' 

        fetch('/api/comments)' 

    ;)] 

     

    const [users, posts, comments] = await Promise.all( 

        responses.map(response => response.json))( 

    ;) 

     

 // חיבור נתונים    

    const enrichedPosts = posts.map(post {( >= 

        ...post, 

        author: users.find(user => user.id === post.userId,) 

        commentCount: comments.filter(comment => comment.postId === 

post.id).length 

    ;))} 

     

    return enrichedPosts; 

} 

``` 


 ##Promises ו-Async/Await מקיף

 :Promises-### מבוא ל

Promise .הוא אובייקט שמייצג השלמה או כישלון עתידי של פעולה אסינכרונית


```javascript 

 בסיסי Promise// יצירת 

const myPromise = new Promise((resolve, reject{ >= ) 

    const success = Math.random() > 0.5; 

     

    setTimeout{ >= )(( 

        if (success{ ) 

            resolve;)"!הפעולה הצליחה"( 

         }else { 

            reject(new Error;))"!הפעולה נכשלה"( 

        } 

     ,}1000;) 

;)} 

 

 Promise-// שימוש ב

myPromise 

    .then(result { >= 

        console.log ,":הצלחה"(result;) 

        return תוצאה נוספת"; // מועבר ל"-then הבא 

    )} 

    .then(result { >= 

        console.log ,":שלב שני"(result;) 

    )} 

    .catch(error { >= 

        console.error ,":שגיאה"(error.message;) 



    )} 

    .finally{ >= )(( 

        console.log;)"תמיד רץ בסוף"( 

    ;)} 

``` 


 :Promise### מצבי

```javascript 

 //Pending - ממתין 

const pendingPromise = new Promiseלא נפתר לעולם // ;)}{ >= )(( 

 

 //Fulfilled - הושלם בהצלחה 

const fulfilledPromise = Promise.resolve;)"הצלחה"( 

 

 //Rejected - נכשל 

const rejectedPromise = Promise.reject(new Error;))"כישלון"( 

 

 רק לדוגמה( -// בדיקת מצב )לא ישיר 

console.log(fulfilledPromise); // Promise {<fulfilled}"הצלחה" :> 

``` 


 ###Promise Methods - מתודותPromise:


```javascript 

 //Promise.all - מחכה לכל ה-Promises 

const promise1 = Promise.resolve(1;) 

const promise2 = Promise.resolve(2;) 

const promise3 = Promise.resolve(3;) 

 

Promise.all([promise1, promise2, promise3)] 

    .then(results { >= 

        console.log(results); // [1, 2, 3] 

    )} 

    .catch(error { >= 

 // אם אחד נכשל, הכל נכשל        

        console.errorאחד מה"(-Promises  ,":נכשלerror;) 

    ;)} 

 

 //Promise.allSettled - מחכה לכולם, גם אם נכשלים 

Promise.allSettled([promise1, promise2, Promise.reject)])"שגיאה"( 

    .then(results { >= 

        results.forEach((result, index{ >= ) 

            if (result.status === 'fulfilled{ )' 

                console.log(`Promise ${index ,`:הצליח }result.value;) 

             }else { 

                console.log(`Promise ${index ,`:נכשל }result.reason;) 

            } 

        ;)} 

    ;)} 

 

 //Promise.race - הראשון שמסתיים 

Promise.race[( 

    new Promise(resolve => setTimeout(() => resolve ,)"(,100)"מהיר) 

    new Promise(resolve => setTimeout(() => resolve ,)"(200)"איטי) 

)] 

.then(result { >= 

    console.log(result"מהיר" // ;) 

;)} 



 

 //Promise.any - הראשון שמצליח 

Promise.any[( 

    Promise.reject (,1)"שגיאה" 

    Promise.resolve,)"הצלחה"( 

    Promise.reject (2)"שגיאה" 

)] 

.then(result { >= 

    console.log(result"הצלחה" // ;) 

)} 

.catch(error { >= 

 // רק אם כולם נכשלים    

    console.errorכל ה"(-Promises  ,":נכשלוerror;) 

;)} 

``` 


#Async/Await - :תחביר מודרני


```javascript 

 // פונקציה אסינכרונית בסיסית

async function fetchUserData(userId{ ) 

    try { 

        const response = await fetch(`/api/users/${userId;)`} 

         

        if (!response.ok{ ) 

            throw new Error(`HTTP error! status: ${response.status;)`} 

        } 

         

        const userData = await response.json;)( 

        return userData; 

     }catch (error{ ) 

        console.error ,":שגיאה בטעינת נתוני משתמש"(error;) 

        throw error השגיאה הלאה; // העברת 

    } 

} 

 

 // שימוש בפונקציה אסינכרונית

async function displayUser(userId{ ) 

    try { 

        const user = await fetchUserData(userId;) 

        console.log{$ שלום`(user.name;)`!} 

     }catch (error{ ) 

        console.logאת המשתמש"(; )"לא ניתן לטעון 

    } 

} 

 

 // פונקציות אסינכרוניות מקבילות

async function fetchMultipleUsers{ )( 

    try { 

 // רצות במקביל        

        const [user1, user2, user3] = await Promise.all[( 

            fetchUserData(1,) 

            fetchUserData(2,) 

            fetchUserData(3) 

        ;)] 

         

        return [user1, user2, user3;] 

     }catch (error{ ) 



        console.error ,":שגיאה בטעינת משתמשים"(error;) 

    } 

} 

 

 async/await// לולאות עם 

async function processUsers(userIds{ ) 

    const results ;][ = 

     

 // רצות ברצף )אחד אחרי השני(    

    for (const id of userIds{ ) 

        try { 

            const user = await fetchUserData(id;) 

            results.push(user;) 

         }catch (error{ ) 

            console.errorשגיאה עם משתמ`({$ שid}:`, error;) 

        } 

    } 

     

    return results; 

} 

 

 )רצות במקביל( map// עם 

async function processUsersParallel(userIds{ ) 

    const promises = userIds.map(id => fetchUserData(id;)) 

     

    try { 

        const results = await Promise.allSettled(promises;) 

        return results 

            .filter(result => result.status === 'fulfilled)' 

            .map(result => result.value;) 

     }catch (error{ ) 

        console.error ,":שגיאה כללית"(error;) 

    } 

} 

``` 


 יות לאסינכרוניות:### דוגמאות מעש

 API-#### טעינת נתונים מ

```javascript 

class ApiService { 

    constructor(baseUrl{ ) 

        this.baseUrl = baseUrl; 

    } 

     

    async request(endpoint, options { )}{ = 

        const url = `${this.baseUrl}${endpoint;`} 

        const config { = 

            headers{ : 

                'Content-Type': 'application/json,' 

                ...options.headers 

            ,} 

            ...options 

        ;} 

         

        try { 

            const response = await fetch(url, config;) 

             



            if (!response.ok{ ) 

                throw new Error(`HTTP ${response.status}: 

${response.statusText;)`} 

            } 

             

            return await response.json;)( 

         }catch (error{ ) 

            console.error(`API Error for ${endpoint}:`, error;) 

            throw error; 

        } 

    } 

     

    async get(endpoint{ ) 

        return this.request(endpoint;) 

    } 

     

    async post(endpoint, data{ ) 

        return this.request(endpoint{ , 

            method: 'POST,' 

            body: JSON.stringify(data) 

        ;)} 

    } 

     

    async put(endpoint, data{ ) 

        return this.request(endpoint{ , 

            method: 'PUT,' 

            body: JSON.stringify(data) 

        ;)} 

    } 

     

    async delete(endpoint{ ) 

        return this.request(endpoint{ , 

            method: 'DELETE' 

        ;)} 

    } 

} 

 

 // שימוש

const api = new ApiService('https://api.example.com;)' 

 

async function manageUser{ )( 

    try { 

 ירת משתמש// יצ        

        const newUser = await api.post('/users{ ,' 

            name,'יוסי כהן' : 

            email: 'yossi@example.com' 

        ;)} 

         

 // עדכון משתמש        

        const updatedUser = await api.put(`/users/${newUser.id{ ,`} 

            ...newUser, 

            age: 25 

        ;)} 

         

 // קבלת כל המשתמשים        

        const allUsers = await api.get('/users;)' 

         

        console.log ,':כל המשתמשים'(allUsers;) 



         

     }catch (error{ ) 

        console.error( ,':שגיאה בניהול משתמש'error;) 

    } 

} 

``` 


 (File API#### עבודה עם קבצים)

```javascript 

class FileProcessor { 

    static async readFile(file{ ) 

        return new Promise((resolve, reject{ >= ) 

            const reader = new FileReader;)( 

             

            reader.onload = event => resolve(event.target.result;) 

            reader.onerror = error => reject(error;) 

             

            reader.readAsText(file;) 

        ;)} 

    } 

     

    static async processImage(file{ ) 

        return new Promise((resolve, reject{ >= ) 

            const reader = new FileReader;)( 

             

            reader.onload = event { >= 

                const img = new Image;)( 

                img.onload { >= )( = 

                    const canvas = document.createElement('canvas;)' 

                    const ctx = canvas.getContext('2d;)' 

                     

 // שינוי גודל לתמונה קטנה יותר                    

                    const maxWidth = 800; 

                    const maxHeight = 600; 

                     

                    let { width, height } = img; 

                     

                    if (width > maxWidth{ ) 

                        height = (height * maxWidth) / width; 

                        width = maxWidth; 

                    } 

                     

                    if (height > maxHeight{ ) 

                        width = (width * maxHeight) / height; 

                        height = maxHeight; 

                    } 

                     

                    canvas.width = width; 

                    canvas.height = height; 

                     

                    ctx.drawImage(img, 0, 0, width, height;) 

                     

                    canvas.toBlob(resolve, 'image/jpeg', 0.8;) 

                ;} 

                 

                img.onerror = reject; 

                img.src = event.target.result; 

            ;} 



             

            reader.onerror = reject; 

            reader.readAsDataURL(file;) 

        ;)} 

    } 

     

    static async uploadFile(file, url{ ) 

        const formData = new FormData;)( 

        formData.append('file', file;) 

         

        try { 

            const response = await fetch(url{ , 

                method: 'POST,' 

                body: formData 

            ;)} 

             

            if (!response.ok{ ) 

                throw new Error(`Upload failed: ${response.statusText;)`} 

            } 

             

            return await response.json;)( 

         }catch (error{ ) 

            console.error('Upload error:', error;) 

            throw error; 

        } 

    } 

} 

 

 // שימוש

async function handleFileUpload(fileInput{ ) 

    const files = Array.from(fileInput.files;) 

     

    for (const file of files{ ) 

        try { 

            console.log({$ :מעבד קובץ`file.name;)`} 

             

            if (file.type.startsWith('image{ ))'/ 

                const processedImage = await 

FileProcessor.processImage(file;) 

                const uploadResult = await 

FileProcessor.uploadFile(processedImage, '/api/upload;)' 

                console.log ,':תמונה הועלתה'(uploadResult;) 

             }else { 

                const uploadResult = await FileProcessor.uploadFile(file, 

'/api/upload;)' 

                console.log ,':קובץ הועלה'(uploadResult;) 

            } 

         }catch (error{ ) 

            console.error{$ שגיאה עם קובץ`(file.name}:`, error;) 

        } 

    } 

} 

``` 


 ##Event Loop ו-Concurrency מפורט

 :Event Loop### הבנת

```javascript 



 // סדר הביצוע המבלבל

console.log('1 - ;)'ראשון סינכרוני // 

 

setTimeout(() => console.log('2 - setTimeout (Macro task)'), 0רביעי // ;) 

 

Promise.resolve().then(() => console.log('3 - Promise (Micro task // ;))')

 שלישי

 

console.log('4 - שני // ;)'סינכרוני 

 

 2, 3, 4, 1// התוצאה: 

 Macro tasksעל פני  Micro tasksדיף מע Event Loop// למה? 

 

 // דוגמה מורכבת יותר

console.log;)'התחלה'( 

 

setTimeout(() => console.log('setTimeout 1'), 0;) 

 

Promise.resolve)( 

    .then{ >= )(( 

        console.log('Promise 1;)' 

        return Promise.resolve;)( 

    )} 

    .then(() => console.log('Promise 2;))' 

 

setTimeout(() => console.log('setTimeout 2'), 0;) 

 

Promise.resolve().then{ >= )(( 

    console.log('Promise 3;)' 

    setTimeout(() => console.log('setTimeout  בתוךPromise'), 0;) 

;)} 

 

console.log;)'סוף'( 

 

 // התוצאה:

 // התחלה

 // סוף

 //Promise 1 

 //Promise 3 

 //Promise 2 

 //setTimeout 1 

 //setTimeout 2 

 //setTimeout  בתוךPromise 

``` 


 ###Microtasks vs Macrotasks:

```javascript 

 //Microtasks :)עדיפות גבוהה( 

 //- Promise.then/catch/finally 

 //- queueMicrotask)( 

 //- MutationObserver 

 

 //Macrotasks :)עדיפות נמוכה( 

 //- setTimeout/setInterval 

 //- setImmediate (Node.js) 

 //- I/O operations 

 //- UI rendering 

 



 // דוגמה לשליטה בסדר

function demonstrateTaskOrder{ )( 

    console.log('1;)' 

     

     //Macrotask 

    setTimeout(() => console.log('2 - setTimeout'), 0;) 

     

     //Microtask 

    Promise.resolve().then(() => console.log('3 - Promise;))' 

     

     //Microtask מיידי 

    queueMicrotask(() => console.log('4 - queueMicrotask;))' 

     

    console.log('5;)' 

} 

 

demonstrateTaskOrder;)( 

 2, 4, 3, 5, 1// תוצאה: 

``` 


 ##DOM Manipulation מתקדם

 ### בחירת אלמנטים מתקדמת:

```javascript 

 // בוררים מתקדמים

const elements { = 

 // בחירה בסיסית    

    byId: document.getElementById('myId,)' 

    byClass: document.getElementsByClassName('myClass'), // 

HTMLCollection 

    byTag: document.getElementsByTagName('div'), // HTMLCollection 

     

     //Query selectors )מומלץ( 

    single: document.querySelector('.class #id,)' 

    multiple: document.querySelectorAll('div.class'), // NodeList 

     

 // בוררים מתקדמים    

    attributes: document.querySelectorAll('[data-role="button,)']" 

    pseudoClasses: document.querySelectorAll('li:nth-child(odd,)') 

    combinators: document.querySelectorAll('nav > ul > li,)' 

     

 // בחירה יחסית    

    closest: element.closest('.parent-classעולה במעלה העץ // ,)' 

    matches: element.matches('.some-classבדיקה אם תואם לבורר // ,)' 

     

 // ילדים ואחים    

    children: element.childrenטים, // רק אלמנ 

    childNodes: element.childNodes כולל // ,text nodes 

    firstElementChild: element.firstElementChild, 

    lastElementChild: element.lastElementChild, 

    nextElementSibling: element.nextElementSibling, 

    previousElementSibling: element.previousElementSibling, 

    parentElement: element.parentElement 

;} 

 

 Array-// המרה ל

const elementsArray = Array.from(document.querySelectorAll('div;))' 

const elementsSpread = [...document.querySelectorAll('div;])' 



``` 


 ### יצירה ושינוי של אלמנטים:

```javascript 

 // יצירת אלמנטים

function createElement(tag, attributes = {}, children { )][ = 

    const element = document.createElement(tag;) 

     

 // הוספת תכונות    

    Object.entries(attributes).forEach(([key, value{ >= )] 

        if (key === 'className{ )' 

            element.className = value; 

         }else if (key === 'textContent{ )' 

            element.textContent = value; 

         }else if (key === 'innerHTML{ )' 

            element.innerHTML = value; 

         }else if (key.startsWith('data-{ ))' 

            element.setAttribute(key, value;) 

         }else { 

            element[key] = value; 

        } 

    ;)} 

     

 // הוספת ילדים    

    children.forEach(child { >= 

        if (typeof child === 'string{ )' 

            element.appendChild(document.createTextNode(child;)) 

         }else { 

            element.appendChild(child;) 

        } 

    ;)} 

     

    return element; 

} 

 

 // שימוש

const button = createElement('button{ ,' 

    className: 'btn btn-primary,' 

    textContent: ,'לחץ כאן' 

    'data-action': 'submit' 

;)} 

 

const card = createElement('div', { className: 'card[ ,} ' 

    createElement('h3', { textContent,)} 'כותרת' : 

    createElement('p', { textContent,)} 'תוכן הכרטיס' : 

    button 

;)] 

 

 DOM-// הוספה ל

document.body.appendChild(card;) 

 

 // שינוי תוכן

const updateElement = (element, updates{ >= ) 

    Object.entries(updates).forEach(([key, value{ >= )] 

        if (key === 'text{ )' 

            element.textContent = value; 

         }else if (key === 'html{ )' 

            element.innerHTML = value; 



         }else if (key === 'classes{ )' 

            element.className = Array.isArray(value) ? value.join(' ') : 

value; 

         }else if (key === 'style{ )' 

            Object.assign(element.style, value;) 

         }else if (key === 'attributes{ )' 

            Object.entries(value).forEach(([attr, val{ >= )] 

                element.setAttribute(attr, val;) 

            ;)} 

        } 

    ;)} 

;} 

 

 // שימוש

updateElement(button{ , 

    text'טקסט חדש' :, 

    classes: ['btn', 'btn-success,]' 

    style: { backgroundColor: 'green', color: 'white,} ' 

    attributes: { 'data-updated': 'true} ' 

;)} 

``` 


 ###Event Handling :מתקדם

```javascript 

class EventManager { 

    constructor{ )( 

        this.listeners = new Map;)( 

    } 

     

 עם אפשרויות מתקדמות event listener// הוספת     

    on(element, event, handler, options { )}{ = 

        const wrappedHandler = (e{ >= ) 

             //Pre-processing 

            if (options.preventDefault) e.preventDefault;)( 

            if (options.stopPropagation) e.stopPropagation;)( 

             

             //Throttling 

            if (options.throttle{ ) 

                if (!handler._throttled{ ) 

                    handler._throttled = true; 

                    setTimeout{ >= )(( 

                        handler._throttled = false; 

                     ,}options.throttle;) 

                    handler(e;) 

                } 

                return; 

            } 

             

             //Debouncing 

            if (options.debounce{ ) 

                clearTimeout(handler._debounceTimer;) 

                handler._debounceTimer = setTimeout{ >= )(( 

                    handler(e;) 

                 ,}options.debounce;) 

                return; 

            } 

             

            handler(e;) 



        ;} 

         

        element.addEventListener(event, wrappedHandler, options;) 

         

 // שמירה לניקוי מאוחר יותר        

        const key = `${element}_${event;`} 

        if (!this.listeners.has(key{ )) 

            this.listeners.set(key;)][ , 

        } 

        this.listeners.get(key).push({ handler, wrappedHandler ;)} 

         

        return this; 

    } 

     

 event listeners// הסרת     

    off(element, event, handler{ ) 

        const key = `${element}_${event;`} 

        const listeners = this.listeners.get(key;) 

         

        if (listeners{ ) 

            const index = listeners.findIndex(l => l.handler === 

handler;) 

            if (index !== -1{ ) 

                const { wrappedHandler } = listeners[index;] 

                element.removeEventListener(event, wrappedHandler;) 

                listeners.splice(index, 1;) 

            } 

        } 

         

        return this; 

    } 

     

     //Event delegation 

    delegate(container, selector, event, handler{ ) 

        container.addEventListener(event, (e{ >= ) 

            const target = e.target.closest(selector;) 

            if (target && container.contains(target{ )) 

                handler.call(target, e;) 

            } 

        ;)} 

         

        return this; 

    } 

     

     //Custom events 

    emit(element, eventName, detail { )}{ = 

        const event = new CustomEvent(eventName{ , 

            detail, 

            bubbles: true, 

            cancelable: true 

        ;)} 

         

        element.dispatchEvent(event;) 

        return this; 

    } 

} 

 

 // שימוש



const eventManager = new EventManager;)( 

 

 //Event  עםthrottling 

eventManager.on(window, 'scroll{ >= )( ,' 

    console.log;)'גלילה'( 

 { ,}throttle: 100 ;)} 

 

 //Event  עםdebouncing 

eventManager.on(searchInput, 'input', (e{ >= ) 

    console.log ,':חיפוש'(e.target.value;) 

 { ,}debounce: 300 ;)} 

 

 //Event delegation 

eventManager.delegate(document.body, '.button', 'click', function(e{ ) 

    console.log ,':כפתור נלחץ'(this.textContent;) 

;)} 

 

 //Custom event 

eventManager.emit(document, 'userLoggedIn { ,' 

    userId: 123 , 

    userName 'יוסי' : 

;)} 

 

 custom event// האזנה ל

document.addEventListener('userLoggedIn', (e{ >= ) 

    console.log ,':משתמש התחבר'(e.detail;) 

;)} 

``` 


 ###DOM Performance Optimization:

```javascript 

 //DocumentFragment לביצועים טובים יותר 

function createMultipleElements(count{ ) 

    const fragment = document.createDocumentFragment;)( 

     

    for (let i = 0; i < count; i{ )++ 

        const div = document.createElement('div;)' 

        div.textContent {$ אלמנט` =i;`} 

        fragment.appendChild(div;) 

    } 

     

 )יעיל יותר( DOM-// הוספה אחת ל    

    document.body.appendChild(fragment;) 

} 

 

 //Virtual scrolling לרשימות ארוכות 

class VirtualList { 

    constructor(container, items, itemHeight, renderItem{ ) 

        this.container = container; 

        this.items = items; 

        this.itemHeight = itemHeight; 

        this.renderItem = renderItem; 

        this.visibleStart = 0; 

        this.visibleEnd = 0; 

         

        this.init;)( 

    } 

     



    init{ )( 

        this.container.style.height = `${this.items.length * 

this.itemHeight}px;` 

        this.container.style.position = 'relative'; 

        this.container.style.overflow = 'auto;' 

         

        this.viewport = document.createElement('div;)' 

        this.viewport.style.position = 'absolute;' 

        this.viewport.style.top = '0;' 

        this.viewport.style.width = '100%;' 

         

        this.container.appendChild(this.viewport;) 

         

        this.container.addEventListener('scroll{ >= )( ,' 

            this.updateVisibleItems;)( 

        ;)} 

         

        this.updateVisibleItems;)( 

    } 

     

    updateVisibleItems{ )( 

        const scrollTop = this.container.scrollTop; 

        const containerHeight = this.container.clientHeight; 

         

        this.visibleStart = Math.floor(scrollTop / this.itemHeight;) 

        this.visibleEnd = Math.min( 

            this.visibleStart + Math.ceil(containerHeight / 

this.itemHeight) + 1, 

            this.items.length 

        ;) 

         

        this.render;)( 

    } 

     

    render{ )( 

        this.viewport.innerHTML ;'' = 

        this.viewport.style.transform = `translateY(${this.visibleStart * 

this.itemHeight}px;`) 

         

        for (let i = this.visibleStart; i < this.visibleEnd; i{ )++ 

            const item = this.renderItem(this.items[i], i;) 

            item.style.height = `${this.itemHeight}px;` 

            this.viewport.appendChild(item;) 

        } 

    } 

} 

 

 // שימוש

const items = Array.from({ length: 10000 }, (_, i) => ({ id: i, name :

 {` {((;i`פריט $}

 

const virtualList = new VirtualList( 

    document.getElementById('list-container,)' 

    items, 

 , // גובה פריט50    

    (item, index{ >= ) 

        const div = document.createElement('div;)' 

        div.textContent = item.name; 



        div.style.padding = '10px;' 

        div.style.borderBottom = '1px solid #ccc;' 

        return div; 

    } 

;) 

``` 


 ##Modules ו-Import/Export מתקדם

 ###ES6 Modules:

```javascript 

 //math.js - קובץ מודול 

export const PI = 3.14159; 

export const E = 2.71828; 

 

export function add(a, b{ ) 

    return a + b; 

} 

 

export function multiply(a, b{ ) 

    return a * b; 

} 

 

export class Calculator { 

    constructor{ )( 

        this.result = 0; 

    } 

     

    add(num{ ) 

        this.result += num; 

        return this; 

    } 

     

    multiply(num{ ) 

        this.result *= num; 

        return this; 

    } 

     

    get value{ )( 

        return this.result; 

    } 

} 

 

 //Default export 

export default function subtract(a, b{ ) 

    return a - b; 

} 

 

 // או כולם יחד

const constants = { PI, E ;} 

const functions = { add, multiply ;} 

 

export { constants, functions ;} 

``` 



```javascript 

 //main.js - שימוש במודול 

 



 //Named imports 

import { PI, add, multiply, Calculator } from './math.js;' 

 

 //Default import 

import subtract from './math.js;' 

 

 // שילוב

import subtract, { PI, add } from './math.js;' 

 

 //Import הכל 

import * as math from './math.js;' 

 

 //Rename imports 

import { add as sum, multiply as product } from './math.js;' 

 

 //Re-export 

export { PI, add } from './math.js;' 

export { default as subtract } from './math.js'; 

 

 //Dynamic imports 

async function loadMath{ )( 

    const mathModule = await import('./math.js;)' 

    return mathModule; 

} 

 

 //Conditional imports 

if (someCondition{ ) 

    const { heavyFunction } = await import('./heavy-module.js;)' 

    heavyFunction;)( 

} 

 

 //Import maps ב(HTML) 

*/ 

<script type="importmap>" 

{ 

  "imports{ :" 

    "lodash": "https://cdn.skypack.dev/lodash," 

    "react": "https://cdn.skypack.dev/react" 

  } 

} 

/<script> 

/* 

``` 


 ###Module Patterns:

```javascript 

 //Singleton Pattern 

class DatabaseConnection { 

    constructor{ )( 

        if (DatabaseConnection.instance{ ) 

            return DatabaseConnection.instance; 

        } 

         

        this.connection = null; 

        DatabaseConnection.instance = this; 

    } 

     

    connect{ )( 



        if (!this.connection{ ) 

            this.connection = { status: 'connected;} ' 

            console.log;)'מתחבר למסד נתונים'( 

        } 

        return this.connection; 

    } 

} 

 

export default new DatabaseConnection;)( 

 

 //Factory Pattern 

class UserFactory { 

    static createUser(type, data{ ) 

        switch (type{ ) 

            case 'admin:' 

                return new AdminUser(data;) 

            case 'regular:' 

                return new RegularUser(data;) 

            case 'guest:' 

                return new GuestUser(data;) 

            default: 

                throw new Error(`Unknown user type: ${type;)`} 

        } 

    } 

} 

 

export { UserFactory ;} 

 

 //Observer Pattern 

class EventEmitter { 

    constructor{ )( 

        this.events ;}{ = 

    } 

     

    on(event, callback{ ) 

        if (!this.events[event{ )] 

            this.events[event;][ = ] 

        } 

        this.events[event].push(callback;) 

    } 

     

    off(event, callback{ ) 

        if (this.events[event{ )] 

            this.events[event] = this.events[event].filter(cb => cb !== 

callback;) 

        } 

    } 

     

    emit(event, data{ ) 

        if (this.events[event{ )] 

            this.events[event].forEach(callback => callback(data;)) 

        } 

    } 

} 

 

export { EventEmitter ;} 

``` 


 ##Web APIs מתקדמים

 ###Fetch API :מתקדם

```javascript 

class HttpClient { 

    constructor(baseURL = '', defaultHeaders { )}{ = 

        this.baseURL = baseURL; 

        this.defaultHeaders { = 

            'Content-Type': 'application/json,' 

            ...defaultHeaders 

        ;} 

        this.interceptors { = 

            request,][ : 

            response][ : 

        ;} 

    } 

     

     //Request interceptor 

    addRequestInterceptor(interceptor{ ) 

        this.interceptors.request.push(interceptor;) 

    } 

     

     //Response interceptor 

    addResponseInterceptor(interceptor{ ) 

        this.interceptors.response.push(interceptor;) 

    } 

     

    async request(url, options { )}{ = 

         //Apply request interceptors 

        let config { = 

            headers: { ...this.defaultHeaders, ...options.headers ,} 

            ...options 

        ;} 

         

        for (const interceptor of this.interceptors.request{ ) 

            config = await interceptor(config;) 

        } 

         

        const fullUrl = url.startsWith('http') ? url : 

`${this.baseURL}${url;`} 

         

        try { 

            let response = await fetch(fullUrl, config;) 

             

             //Apply response interceptors 

            for (const interceptor of this.interceptors.response{ ) 

                response = await interceptor(response;) 

            } 

             

            if (!response.ok{ ) 

                throw new Error(`HTTP ${response.status}: 

${response.statusText;)`} 

            } 

             

            const contentType = response.headers.get('content-type;)' 

            if (contentType && contentType.includes('application/json ))'

{ 

                return await response.json;)( 



            } 

             

            return await response.text;)( 

         }catch (error{ ) 

            console.error('Request failed:', error;) 

            throw error; 

        } 

    } 

     

    get(url, options { )}{ = 

        return this.request(url, { method: 'GET', ...options ;)} 

    } 

     

    post(url, data, options { )}{ = 

        return this.request(url{ , 

            method: 'POST,' 

            body: JSON.stringify(data,) 

            ...options 

        ;)} 

    } 

     

    put(url, data, options { )}{ = 

        return this.request(url{ , 

            method: 'PUT,' 

            body: JSON.stringify(data,) 

            ...options 

        ;)} 

    } 

     

    delete(url, options { )}{ = 

        return this.request(url, { method: 'DELETE', ...options ;)} 

    } 

} 

 

 // שימוש

const api = new HttpClient('https://api.example.com;)' 

 

 interceptors// הוספת 

api.addRequestInterceptor(async (config{ >= ) 

    const token = localStorage.getItem('authToken;)' 

    if (token{ ) 

        config.headers.Authorization = `Bearer ${token;`} 

    } 

    return config; 

;)} 

 

api.addResponseInterceptor(async (response{ >= ) 

    if (response.status === 401{ ) 

         //Redirect to login 

        window.location.href = '/login;' 

    } 

    return response; 

;)} 

``` 


 ###Local Storage ו-Session Storage:

```javascript 

class StorageManager { 



    constructor(storage = localStorage{ ) 

        this.storage = storage; 

    } 

     

    set(key, value, expiry = null{ ) 

        const item { = 

            value, 

            expiry: expiry ? Date.now() + expiry : null 

        ;} 

        this.storage.setItem(key, JSON.stringify(item;)) 

    } 

     

    get(key{ ) 

        const itemStr = this.storage.getItem(key;) 

        if (!itemStr) return null; 

         

        try { 

            const item = JSON.parse(itemStr;) 

             

 // בדיקת תפוגה            

            if (item.expiry && Date.now() > item.expiry{ ) 

                this.storage.removeItem(key;) 

                return null; 

            } 

             

            return item.value; 

         }catch (error{ ) 

            console.error('Error parsing stored item:', error;) 

            return null; 

        } 

    } 

     

    remove(key{ ) 

        this.storage.removeItem(key;) 

    } 

     

    clear{ )( 

        this.storage.clear;)( 

    } 

     

    keys{ )( 

        return Object.keys(this.storage;) 

    } 

     

     //Cache with automatic cleanup 

    setCache(key, value, ttl = 3600000) { // 1 hour default 

        this.set(`cache_${key}`, value, ttl;) 

    } 

     

    getCache(key{ ) 

        return this.get(`cache_${key;)`} 

    } 

     

    clearExpired{ )( 

        const keys = this.keys;)( 

        keys.forEach(key { >= 

            this.get(keyזה יסיר פריטים שפגו // ;) 

        ;)} 



    } 

} 

 

 // שימוש

const storage = new StorageManager;)( 

const sessionStorage = new StorageManager(window.sessionStorage;) 

 

 // שמירה עם תפוגה )שעה(

storage.set('userData', { name,'יוסי' : age: 25 }, 3600000;) 

 

 // קבלה

const userData = storage.get('userData;)' 

 

 //Cache 

storage.setCache('apiResponse', data, 600000); // 10 דקות 

const cachedData = storage.getCache('apiResponse;)' 

``` 


 ,Web Workersד נושאים כמו זהו חלק נרחב נוסף מהמדריך. האם תרצה שאמשיך עם עו

Service Workers, WebSockets?או נושאים אחרים ,

