
 לבינה מלאכותית JavaScript# מדריך אימון

 #JavaScript Training Guide for AI - עם דגש על נושאים מבלבלים

 Introduction -## מבוא

JavaScript הוא שפת תכנות דינמית המשמשת ליצירת אינטראקטיביות באתרי

 אינטרנט.

JavaScript (רץ בדפדפןclient-side(ובשרת)server-side עםNode.js.)

 HTML-מתחבר ל JavaScript: איך #1נושא מבלבל ️⚠##

 :JavaScript### שלוש דרכים לכתוב


```html 

!<-- 1 .JavaScript  )חיצוני )הדרך הטובה ביותר--> 

<script src="script.js"></script> 

 

!<-- 2 .JavaScript  פנימי--> 

<script> 

    console.log('Hello World;)' 

/<script> 

 

!<-- 3 .JavaScript ( ישירinline -  )לא מומלץ--> 

<button onclick="alert('Hello/<לחץ כאן>")'button> 

``` 


 scriptבלבול נפוץ: מיקום תגית ️⚠###

```html 

 <--נטען  HTML-רץ לפני שה JavaScript -רע  -->!

<head> 

    <script src="script.js"></script> 

/<head> 

 

 <--נטען  HTML-רץ אחרי שה JavaScript -טוב  -->!

<body> 

 <-- HTMLתוכן  -->!    

    <script src="script.js"></script> 

/<body> 

 

 <-- deferאו עם  -->!

<head> 

    <script src="script.js" defer></script> 

/<head> 

``` 


 Language Basics -## בסיסי השפה

 : הכרזה על משתנים#2נושא מבלבל ️⚠###


```javascript 

 // הסבר מפורט על סוגי הכרזות משתנים:

 

 //var -  הימנע מלהשתמש! -( 2015הדרך הישנה )לפני 

var oldVariable ;'ישן' = 

 :var// בעיות עם 

 //1 .Function scope  במקוםblock scope 

 //2 .Hoisting מבלבל 

 . ניתן להכריז על אותו משתנה פעמיים3// 

 . לא מונע שגיאות נפוצות4// 



 

 //let - למשתנים שהערך שלהם יכול להשתנות 

let changeable ;'יכול להשתנות' = 

changeable !השתנה'; // זה עובד' = 

 //let changeable  לא ניתן להכריז שוב -לשגיאה = 'שגיאה'; // זה יגרום 

 

 :let-// דוגמאות שימוש ב

let counter = 0מונה שיכול להשתנות //           ; 

let userName שם משתמש שיתמלא מאוחר יותר //         ;'' = 

let isLoggedIn = falseסטטוס שיכול להשתנות //    ; 

 

 //const - שתנות(למשתנים קבועים )לא יכולים לה 

const constant ;'לא יכול להשתנות' = 

 //constant !שגיאה!'; // זה יגרום לשגיאה' = 

 

 :const-// דוגמאות שימוש ב

const PI = 3.14159קבוע מתמטי //              ; 

const API_URL = 'https כתובת //   ;'...//:API 

const MAX_USERS = 100 קבועה;           // מגבלה 

 

 עם אובייקטים ומערכים constבלבול נפוץ מאוד:  ️⚠// 

 

 לא אומר שהתוכן לא יכול להשתנות! const// הסבר חשוב: 

 //const מונע שינוי של הרפרנס )ההפניה( למשתנה, לא את התוכן עצמו 

 

const person = { name;} 'יוסי' : 

person.name  //    ;'נה תכונה בתוך האובייקטמש! עובד זה ⚠= 'דני 

person.age = 25 //        ;⚠ חדשה תכונה מוסיף! עובד גם זה 

delete person.name //     ;⚠ תכונה מוחק! עובד גם זה 

 

 //person  // ;}{ =⚠ עצמו האובייקט את לשנות יכול לא - יעבוד לא זה 

 

 // דוגמה עם מערך:

const numbers = [1, 2, 3;] 

numbers.push(4 //        ;)⚠ אלמנט מוסיף - עובד 

numbers[0] = 10 //        ;⚠ אלמנט משנה - עובד 

numbers.pop //          ;)(⚠ אלמנט מסיר - עובד 

 

 //numbers = [5, 6, 7 // ;]⚠ עצמו המערך את לשנות יכול לא - עובד לא 

 

 // איך למנוע שינוי של התוכן?

const frozenPerson = Object.freeze({ name;)} 'יוסי' : 

 //frozenPerson.name  האובייקט קפוא -= 'דני'; // לא יעבוד 

 

const frozenNumbers = Object.freeze([1, 2, 3;)] 

 //frozenNumbers.push(4 לא יעבוד // ;)- המערך קפוא 

``` 


 Hoistingבלבול נפוץ: ️⚠###

```javascript 

 // מה שאתה כותב:

console.log(myVar); // undefined )!לא שגיאה( 

var myVar = 'Hello;' 

 

 // מה שהמחשב "רואה":

var myVar; // undefined 

console.log(myVar); // undefined 



myVar = 'Hello;' 

 

 :let/const// עם 

console.log(myLet); // ReferenceError! 

let myLet = 'Hello;' 

``` 


 Data Types -## סוגי נתונים

 : סוגי נתונים פרימיטיביים#3נושא מבלבל ️⚠###


```javascript 

 // מספר

let number = 42; 

let decimal = 3.14; 

let negative = -10; 

let infinity = Infinity; 

let notANumber = NaN; // "Not a Number "- זה מסוג  אבלnumber! 

 

console.log(typeof NaN); // "number "- !מבלבל 

 

 // מחרוזת

let string1 ;'גרשיים בודדים' = 

let string2 ;"גרשיים כפולים" = 

let string3 {$ תבנית מחרוזת עם` =number}`; // Template literal 

 

 // בוליאני

let isTrue = true; 

let isFalse = false; 

 

 //undefined - משתנה שהוכרז אבל לא קיבל ערך 

let undefinedVar; 

console.log(undefinedVar); // undefined 

 

 //null - ערך ריק במכוון 

let nullVar = null; 

 

 null vs undefinedבלבול נפוץ:  ️⚠// 

console.log(typeof null); // "object "- זה באג ישן ב-JavaScript! 

console.log(typeof undefined); // "undefined" 

 

console.log(null == undefined); // true - שווים בהשוואה רגילה 

console.log(null === undefined); // false - לא שווים בהשוואה מדויקת 

``` 


 Falsy-ו Truthy: #4נושא מבלבל ️⚠###


```javascript 

 (:false)נחשבים  Falsy// ערכים 

if (false) { } // false 

if (0) { } // 0 

if (-0) { } // -0 

if (0n) { } // BigInt 0 

if מחרוזת ריקה // } { )''( 

if (null) { } // null 

if (undefined) { } // undefined 

if (NaN) { } // NaN 

 



 (:true)נחשבים  Truthy// כל השאר הם 

if (true) { console.log('true} ;)' 

if (1) { console.log} ;)'מספר חיובי'( 

if (-1) { console.log} ;)'מספר שלילי'( 

if ('0') { console.log זה 0)'מחרוזת עם // } ;)'truthy! 

if ('false') { console.log מחרוזת עם'(false זה גם // } ;)'truthy! 

if ([]) { console.log // } ;)'מערך ריק'(truthy! 

if ({}) { console.log // } ;)'אובייקט ריק'(truthy! 

 

 דוגמאות מבלבלות: ️⚠// 

console.log(Boolean('0')); // true - מחרוזת לא ריקה 

console.log(Boolean('false')); // true - מחרוזת לא ריקה 

console.log(Boolean([])); // true - מערך )גם ריק( הוא אובייקט 

console.log(Boolean({})); // true - )אובייקט )גם ריק 

``` 


 Functions -## פונקציות

 : דרכים שונות להגדיר פונקציות#5נושא מבלבל ️⚠###


```javascript 

 //1 .Function Declaration - ( מוגדרת בכל הקובץhoisted) 

function regularFunction(name{ ) 

    return {$ שלום`name;`} 

} 

 

 // ניתן לקרוא לפני ההגדרה:

console.log(regularFunction!עובד // ;))'יוסי'( 

 

 //2 .Function Expression -  לאhoisted 

const functionExpression = function(name{ ) 

    return {$ שלום`name;`} 

;} 

 

 //3 .Arrow Function - תחביר קצר 

const arrowFunction = (name{ >= ) 

    return {$ שלום`name;`} 

;} 

 

 //Arrow function  עםreturn מרומז 

const shortArrow = name {$ שלום` >=name;`} 

 

 בפונקציות thisבלבול נפוץ:  ️⚠// 

const person { = 

    name,'יוסי' : 

     

 personמצביע על  this -// פונקציה רגילה     

    regularMethod: function{ )( 

        console.log(this.name'יוסי' // ;) 

    ,} 

     

     //Arrow function - this מצביע על הקונטקסט החיצוני 

    arrowMethod{ >= )( : 

        console.log(this.name); // undefined  או(window.name) 

    } 

;} 

 

person.regularMethod'יוסי' // ;)( 



person.arrowMethod(); // undefined 

``` 


 : פרמטרים ברירת מחדל#6נושא מבלבל ️⚠###


```javascript 

 // פרמטרים ברירת מחדל

function greet(name  ,'אורח' =age = 0{ ) 

    return שלו`{$ םname{$ בן ,}age;`} 

} 

 

console.log(greet שלום אורח, בן" // ;))(0" 

console.log(greet שלום יוסי, בן" // ;))'0)'יוסי" 

console.log(greet ,'(; // "שלום יוסי, בן 25)'יוסי)25" 

 

 //Rest parameters - פרמטרים משתנים 

function sum(...numbers{ ) 

    return numbers.reduce((total, num) => total + num, 0;) 

} 

 

console.log(sum(1, 2, 3, 4)); // 10 

 

 //Spread operator - פיזור מערך 

const numbers = [1, 2, 3;] 

console.log(sum(...numbers)); // 6 

 

 arguments vs rest parametersבלבול נפוץ:  ️⚠// 

function oldWay({ ) 

     //arguments - )אובייקט דמוי מערך )ישן 

    console.log(arguments[0;)] 

 // לא ניתן להשתמש במתודות מערך ישירות    

} 

 

function newWay(...args{ ) 

     //args - מערך אמיתי 

    console.log(args[0;)] 

    args.forEach(arg => console.log(arg // ;))!עובד 

} 

``` 


 Objects -## אובייקטים

 : יצירה וגישה לאובייקטים#7נושא מבלבל ️⚠###


```javascript 

 // יצירת אובייקט

const person { = 

    name,'יוסי' : 

    age: 25, 

    'full-nameיוסי כהן', // מפתח עם מקף' :' 

    hobbies]'קריאה', 'ספורט'[ : 

;} 

 

 // גישה לתכונות

console.log(person.name'יוסי' // ;) 

console.log(person['name 'יוסי' // ;)]'- זהה 

console.log(person['full-nameחובה עם מקף // ;)]' 

console.log(person.full-name!שגיאה // ;) 



 

 // גישה דינמית

const property = 'age;' 

console.log(person[property]); // 25 

 

 // הוספת תכונות

person.city ;'תל אביב' = 

person['country;'ישראל' = ]' 

 

 // מחיקת תכונות

delete person.age; 

 

 בלבול נפוץ: בדיקת קיום תכונה ️⚠// 

console.log(person.age); // undefined - !לא אומר שהתכונה לא קיימת 

console.log('age' in person); // false - בדיקה נכונה 

console.log(person.hasOwnProperty('name')); // true 

 

 //Object methods 

const keys = Object.keys(personמערך של מפתחות // ;) 

const values = Object.values(personמערך של ערכים // ;) 

const entries = Object.entries(person]מערך של ]מפתח, ערך // ;) 

``` 


 : העתקת אובייקטים#8נושא מבלבל ️⚠###


```javascript 

const original = { name ,'יוסי' :hobbies;} ]'קריאה'[ : 

 

 רק הרמה הראשונה -// העתקה שטחית 

const shallowCopy = { ...original ;} 

const shallowCopy2 = Object.assign({}, original;) 

 

 בעיה: שינוי במערך משפיע על המקור ️⚠// 

shallowCopy.hobbies.push;)'ספורט'( 

console.log(original.hobbies ]'קריאה', 'ספורט'[ // ;)- !השתנה 

 

 כל הרמות -// העתקה עמוקה 

const deepCopy = JSON.parse(JSON.stringify(original;)) 

 Date, undefinedעובד עם פונקציות,  בעיה: לא ️⚠// 

 

 )חדש( structuredClone// פתרון טוב יותר עם 

const deepCopy2 = structuredClone(original;) 

``` 


 Arrays -## מערכים

 : מתודות מערך#9נושא מבלבל ️⚠###


```javascript 

const numbers = [1, 2, 3, 4, 5;] 

const fruits ;]'תפוח', 'בננה', 'תפוז'[ = 

 

 (:Mutating// מתודות שמשנות את המערך המקורי )

fruits.pushאבטיח'(; // הוספה לסוף'( 

fruits.popהסרה מהסוף // ;)( 

fruits.unshiftתות'(; // הוספה להתחלה'( 

fruits.shiftהסרה מההתחלה // ;)( 

fruits.sortמיון // ;)( 



fruits.reverse)(הפיכה // ; 

fruits.splice(1, 1הסרה והוספה במקום ספציפי // ;)'מנגו' , 

 

 (:Non-mutating// מתודות שלא משנות את המערך )

const doubled = numbers.map(num => num * 2יצירת מערך חדש // ;) 

const evens = numbers.filter(num => num % 2 === 0סינון // ;) 

const sum = numbers.reduce((total, num) => total + num, 0 צמצום לערך // ;)

 אחד

const found = numbers.find(num => num > 3מציאת אלמנט ראשון // ;) 

const exists = numbers.includes(3בדיקת קיום // ;) 

const sliced = numbers.slice(1, 3)(; // חיתוך )לא משנה את המקור 

 

 forEach vs mapבלבול נפוץ:  ️⚠// 

 //forEach - לא מחזיר כלום, רק מבצע פעולה 

numbers.forEach(num => console.log(num;)) 

 

 //map - מחזיר מערך חדש 

const strings = numbers.map(num => num.toString;))( 

 

 שגיאה נפוצה: ️⚠// 

const result = numbers.forEach(num => num * 2); // undefined! 

const correct = numbers.map(num => num * 2); // [2, 4, 6, 8, 10] 

``` 


 : מערכים דלילים#10נושא מבלבל ️⚠###


```javascript 

 // יצירת מערך דליל

const sparse = new Array(3); // [empty × 3] 

console.log(sparse.length); // 3 

console.log(sparse[0]); // undefined 

 

 בעיה: מתודות מערך מתנהגות שונה ️⚠// 

sparse.forEach(item => console.log;))'לא יודפס'( 

sparse.map(item => item * 2); // [empty × 3 ]- !לא עובד 

 

 // פתרון: מילוי המערך

const filled = Array(3).fill(0); // [0, 0, 0] 

const range = Array.from({length: 3}, (_, i) => i); // [0, 1, 2] 

``` 


 Closures-ו Scope: #11נושא מבלבל ️⚠##

 ###Scope :)טווח(

```javascript 

 //Global scope 

let globalVar ;'גלובלי' = 

 

function outerFunction{ )( 

     //Function scope 

    let outerVar ;'חיצוני' = 

     

    function innerFunction{ )( 

         //Inner function scope 

        let innerVar ;'פנימי' = 

         

        console.log(globalVarנגיש // ;) 

        console.log(outerVarנגיש // ;) 



        console.log(innerVarנגיש // ;) 

    } 

     

    console.log(globalVarנגיש // ;) 

    console.log(outerVarנגיש // ;) 

     //console.log(innerVar!שגיאה // ;) 

} 

 

 //Block scope  עם(let/const) 

if (true{ ) 

    let blockVar ;'בלוק' = 

    var functionVar ;'פונקציה' = 

} 

 

 //console.log(blockVar!שגיאה // ;) 

console.log(functionVar עובד // ;)- var  לא מכבדblock scope 

``` 


 ###Closures :)סגירות(

```javascript 

 מושג מבלבל: פונקציה "זוכרת" את הסביבה שלה ️⚠// 

function createCounter{ )( 

    let count = 0; 

     

    return function{ )( 

        countגישה למשתנה מהפונקציה החיצונית // ;++ 

        return count; 

    ;} 

} 

 

const counter1 = createCounter;)( 

const counter2 = createCounter;)( 

 

console.log(counter1()); // 1 

console.log(counter1()); // 2 

console.log(counter2()); // 1 - נפרד! מונה 

 

 // דוגמה מבלבלת עם לולאה:

for (var i = 0; i < 3; i{ )++ 

    setTimeout(() => console.log(i), 100 ידפיס // ;)3, 3, 3 

} 

 

 :let// פתרון עם 

for (let i = 0; i < 3; i{ )++ 

    setTimeout(() => console.log(i), 100 ידפיס // ;)2, 1, 0 

} 

 

 :closureן עם // פתרו

for (var i = 0; i < 3; i{ )++ 

    (function(j{ ) 

        setTimeout(() => console.log(j), 100 ידפיס // ;)2, 1, 0 

    ()}i;) 

} 

``` 


 this Keyword: #12נושא מבלבל ️⚠##


```javascript 



 //this :בקונטקסטים שונים 

 

 //1 .Global context 

console.log(this); // Window  בדפדפן( או(global ב(-Node.js) 

 

 //2 .Object method 

const person { = 

    name,'יוסי' : 

    greet: function{ )( 

        console.log(this.name'יוסי' // ;) 

    } 

;} 

 

person.greet'יוסי' // ;)( 

 

 סטבעיה: איבוד הקונטק ️⚠// 

const greetFunction = person.greet; 

greetFunction(); // undefined או שגיאה ב(-strict mode) 

 

 // פתרונות:

 //1 .bind 

const boundGreet = person.greet.bind(person;) 

boundGreet'יוסי' // ;)( 

 

 //2 .call 

person.greet.call(person'יוסי' // ;) 

 

 //3 .apply 

person.greet.apply(person'יוסי' // ;) 

 

 //4 .Arrow function  לא משנה את(this) 

const person2 { = 

    name,'דני' : 

    greet{ >= )( : 

        console.log(this.name); // undefined - this מהקונטקסט החיצוני 

    } 

;} 

 

 :event listenersדוגמה מבלבלת עם  ️⚠// 

const button = document.querySelector('button;)' 

 

 מצביע על הכפתור this -// פונקציה רגילה 

button.addEventListener('click', function{ )( 

    console.log(this); // <button> 

;)} 

 

 //Arrow function - this מצביע על הקונטקסט החיצוני 

button.addEventListener('click{ >= )( ,' 

    console.log(this); // Window 

;)} 

``` 


 Async/Await-ו Promises: #13נושא מבלבל ️⚠##

 ###Promises:

```javascript 

 Promise// יצירת 

const myPromise = new Promise((resolve, reject{ >= ) 



    const success = Math.random() > 0.5; 

     

    setTimeout{ >= )(( 

        if (success{ ) 

            resolve;)'!הצלחה'( 

         }else { 

            reject;)'!כישלון'( 

        } 

     ,}1000;) 

;)} 

 

 Promise-// שימוש ב

myPromise 

    .then(result { >= 

        console.log(result'!הצלחה' // ;) 

        return ;'תוצאה נוספת' 

    )} 

    .then(result { >= 

        console.log(result'תוצאה נוספת' // ;) 

    )} 

    .catch(error { >= 

        console.log(error'!כישלון' // ;) 

    )} 

    .finally{ >= )(( 

        console.log;)'תמיד רץ'( 

    ;)} 

 

 Promise.all vs Promise.raceבלבול נפוץ:  ️⚠// 

const promise1 = Promise.resolve(1;) 

const promise2 = Promise.resolve(2;) 

const promise3 = Promise.resolve(3;) 

 

 //Promise.all - מחכה לכולם 

Promise.all([promise1, promise2, promise3)] 

    .then(results => console.log(results)); // [1, 2, 3] 

 

 //Promise.race - מחכה לראשון 

Promise.race([promise1, promise2, promise3)] 

    .then(result => console.log(result)); // 1 )הראשון שהסתיים( 

``` 


 ###Async/Await:

```javascript 

 יה אסינכרונית// פונקצ

async function fetchData{ )( 

    try { 

        const response = await fetch('https://api.example.com/data;)' 

        const data = await response.json;)( 

        return data; 

     }catch (error{ ) 

        console.error ,':שגיאה'(error;) 

        throw errorהעברת השגיאה הלאה // ; 

    } 

} 

 

 // שימוש בפונקציה אסינכרונית

fetchData)( 

    .then(data => console.log(data)) 



    .catch(error => console.error(error;)) 

 

 // או בתוך פונקציה אסינכרונית אחרת

async function main{ )( 

    try { 

        const data = await fetchData;)( 

        console.log(data;) 

     }catch (error{ ) 

        console.error(error;) 

    } 

} 

 

 awaitשגיאה נפוצה: שכחת  ️⚠// 

async function wrongWay{ )( 

    const data = fetchData זה // ;)(Promise!לא הנתונים , 

    console.log(data); // [object Promise] 

} 

 

async function rightWay{ )( 

    const data = await fetchDataעכשיו זה הנתונים // ;)( 

    console.log(data;) 

} 

``` 


 Asynchronous JavaScript-ו Event Loop: #14נושא מבלבל ️⚠##


```javascript 

 המבלבל: // סדר הביצוע

console.log('1סינכרוני // ;)' 

 

setTimeout(() => console.log('2'), 0 אסינכרוני // ;)- Macro task 

 

Promise.resolve().then(() => console.log('3 אסינכרוני // ;))'- Micro task 

 

console.log('4סינכרוני // ;)' 

 

 2, 3, 4, 1// התוצאה: 

 Macro tasksעל פני  Micro tasksמעדיף  Event Loop// למה? 

 

 // דוגמה מורכבת יותר:

console.log;)'התחלה'( 

 

setTimeout(() => console.log('setTimeout 1'), 0;) 

 

Promise.resolve)( 

    .then(() => console.log('Promise 1))' 

    .then(() => console.log('Promise 2;))' 

 

setTimeout(() => console.log('setTimeout 2'), 0;) 

 

console.log;)'סוף'( 

 

 Promise 1, Promise 2, setTimeout 1, setTimeout 2// התוצאה: התחלה, סוף, 

``` 


 ##DOM Manipulation

 : בחירת אלמנטים#15נושא מבלבל ️⚠###


```javascript 

 // בחירת אלמנט יחיד

const element = document.getElementById('myId לפי // ;)'ID 

const element2 = document.querySelector('.myClassהראשון עם המחלקה // ;)' 

const element3 = document.querySelector('#myId לפי // ;)'ID  כמו(CSS) 

 

 // בחירת מספר אלמנטים

const elements = document.getElementsByClassName('myClass'); // 

HTMLCollection 

const elements2 = document.getElementsByTagName('div'); // HTMLCollection 

const elements3 = document.querySelectorAll('.myClass'); // NodeList 

 

 HTMLCollection vs NodeListבלבול נפוץ:  ️⚠// 

 //HTMLCollection - )חי" )משתנה אוטומטית" 

const divs = document.getElementsByTagName('div;)' 

console.log(divs.length נניח // ;)3 

 

document.body.appendChild(document.createElement('div;))' 

console.log(divs.length עכשיו // ;)4! 

 

 //NodeList - )סטטי" )לא משתנה" 

const divsStatic = document.querySelectorAll('div;)' 

console.log(divsStatic.length נניח // ;)4 

 

document.body.appendChild(document.createElement('div;))' 

console.log(divsStatic.length עדיין // ;)4 

 

 // המרה למערך

const divsArray = Array.from(divs;) 

const divsArray2 = [...document.querySelectorAll('div;])' 

``` 


 ### שינוי תוכן ועיצוב:

```javascript 

const element = document.querySelector('#myElement;)' 

 

 // שינוי תוכן

element.textContent טקסט חדש'; // טקסט בלבד' = 

element.innerHTML = '<strongקסט מודגש>/<טstrong>'; // HTML 

 

 textContent vs innerHTMLבלבול נפוץ:  ️⚠// 

element.innerHTML = '<script>alert("hack")</script!מסוכן // ;'> 

element.textContent = '<script>alert("hack")</script יוצג  -<'; // בטוח

 כטקסט

 

 // שינוי עיצוב

element.style.color = 'red;' 

element.style.backgroundColor = 'yellow;' 

element.style.fontSize = '20px;' 

 

 // שינוי מחלקות

element.classList.add('newClass;)' 

element.classList.remove('oldClass;)' 

element.classList.toggle('activeClass;)' 

element.classList.contains('someClassבדיקה // ;)' 

 

 // שינוי תכונות



element.setAttribute('data-id', '123;)' 

element.getAttribute('data-id'); // '123' 

element.removeAttribute('data-id;)' 

 

 // תכונות מיוחדות

element.id = 'newId;' 

element.className = 'class1 class2;' 

``` 


 Event Handling: #16ושא מבלבל נ ️⚠###


```javascript 

const button = document.querySelector('button;)' 

 

 :event listeners// דרכים שונות להוסיף 

 

 //1 .HTML attribute )לא מומלץ( 

< //button onclick="handleClick>")( 

 

 //2 .Property  מאפשר רק(listener )אחד 

button.onclick = function{ )( 

    console.log;)'!נלחץ'( 

;} 

 

 //3 .addEventListener )הדרך הטובה ביותר( 

button.addEventListener('click', function(event{ ) 

    console.log ,'!נלחץ'(event;) 

;)} 

 

 //Event object 

button.addEventListener('click', function(event{ ) 

    console.log(event.type); // 'click' 

    console.log(event.targetהאלמנט שעליו לחצו // ;) 

    console.log(event.currentTargetהאלמנט שעליו רשום ה // ;)-listener 

     

    event.preventDefaultמניעת התנהגות ברירת מחדל // ;)( 

    event.stopPropagationעצירת בועות האירוע // ;)( 

;)} 

 

 Event Bubblingבלבול נפוץ:  ️⚠// 

document.body.addEventListener('click', () => console.log('Body;))' 

const div = document.querySelector('div;)' 

div.addEventListener('click', () => console.log('Div;))' 

const span = document.querySelector('spanבתוך ה // ;)'-div 

span.addEventListener('click', () => console.log('Span;))' 

 

 Span, Div, Body (bubbling)תדפיס:  span// לחיצה על 

 

 :bubbling// עצירת 

span.addEventListener('click', (event{ >= ) 

    console.log('Span;)' 

    event.stopPropagation רק // ;)(Span יודפס 

;)} 

 

 //Event delegation - טכניקה חשובה 

document.body.addEventListener('click', function(event{ ) 

    if (event.target.matches('.button{ ))' 

        console.log;)'!כפתור נלחץ'( 



    } 

;)} 

``` 


 Modules (ES6): #17נושא מבלבל ️⚠##

 ###Export:

```javascript 

 //math.js 

export const PI = 3.14159; 

 

export function add(a, b{ ) 

    return a + b; 

} 

 

export function multiply(a, b{ ) 

    return a * b; 

} 

 

 //Default export 

export default function subtract(a, b{ ) 

    return a - b; 

} 

 

 // או כולם יחד:

const PI = 3.14159; 

function add(a, b) { return a + b} ; 

function multiply(a, b) { return a * b} ; 

function subtract(a, b) { return a - b} ; 

 

export { PI, add, multiply ;} 

export default subtract; 

``` 


 ###Import:

```javascript 

 //main.js 

 

 //Named imports 

import { PI, add, multiply } from './math.js;' 

 

 //Default import 

import subtract from './math.js;' 

 

 // שילוב

import subtract, { PI, add } from './math.js;' 

 

 //Import הכל 

import * as math from './math.js;' 

console.log(math.PI;) 

console.log(math.add(2, 3;)) 

 

 //Rename 

import { add as sum } from './math.js;' 

 

 //Dynamic import 

async function loadMath{ )( 

    const math = await import('./math.js;)' 



    console.log(math.add(2, 3;)) 

} 

``` 


 Inheritance-ו Classes: #18נושא מבלבל ️⚠##


```javascript 

 // הגדרת מחלקה

class Person { 

     //Constructor 

    constructor(name, age{ ) 

        this.name = name; 

        this.age = age; 

    } 

     

     //Method 

    greet{ )( 

        return {$ שלום, אני`this.name;`} 

    } 

     

     //Static method 

    static species{ )( 

        return 'Homo sapiens;' 

    } 

     

     //Getter 

    get info{ )( 

        return `${this.name{$ בן ,}this.age;`} 

    } 

     

    // Setter 

    set age(newAge{ ) 

        if (newAge >= 0{ ) 

            this._age = newAge; 

        } 

    } 

     

    get age{ )( 

        return this._age; 

    } 

} 

 

 instance// יצירת 

const person = new Person ,'(;25)'יוסי 

console.log(person.greet"שלום, אני יוסי" // ;))( 

console.log(Person.species()); // "Homo sapiens" 

 

 // ירושה

class Student extends Person { 

    constructor(name, age, school{ ) 

        super(name, ageקריאה ל // ;)-constructor של ההורה 

        this.school = school; 

    } 

     

     //Override method 

    greet{ )( 

        return `${super.greet{$אני לומד ב ,})(this.school;`} 

    } 



     

    study{ )( 

        return `${this.name;`לומד } 

    } 

} 

 

const student = new Student ,'האוניברסיטה העברית'(;20)'דני' , 

console.log(student.greet שלום, אני דני, אני לומד בהאוניברסיטה" // ;))(

 העברית"

 

 Prototypesהם סוכר תחבירי על  Classesבלבול נפוץ:  ️⚠// 

console.log(typeof Person); // "function" 

console.log(Person.prototype.greet); // function greet)( 

``` 


 Prototypes: #19נושא מבלבל ️⚠##


```javascript 

 prototypeיש לו  JavaScript-// כל אובייקט ב

const obj ;}{ = 

console.log(obj.__proto__); // Object.prototype 

 

 prototype// פונקציות הן אובייקטים עם 

function Person(name{ ) 

    this.name = name; 

} 

 

Person.prototype.greet = function{ )( 

    return {$ שלום`this.name;`} 

;} 

 

const person1 = new Person;)'יוסי'( 

const person2 = new Person;)'דני'( 

 

console.log(person1.greet"שלום יוסי" // ;))( 

console.log(person2.greet"שלום דני" // ;))( 

 

 // שניהם חולקים את אותה פונקציה

console.log(person1.greet === person2.greet); // true 

 

 //Prototype chain 

console.log(person1.__proto__ === Person.prototype); // true 

console.log(Person.prototype.__proto__ === Object.prototype); // true 

console.log(Object.prototype.__proto__); // null 

 

 לכל המחרוזות method// הוספת 

String.prototype.reverse = function{ )( 

    return this.split('').reverse().join;)''( 

;} 

 

console.log.'שלום'(reverse"םולש" // ;))( 

``` 


)המרת טיפוסים(Type Coercion: #20נושא מבלבל ️⚠##


```javascript 

 //JavaScript מנסה להמיר טיפוסים אוטומטית 

 



 // עם == )השוואה רגילה(

console.log(5 == '5'); // true - המרה אוטומטית 

console.log(true == 1); // true 

console.log(false == 0); // true 

console.log(null == undefined); // true 

console.log('' == 0); // true 

console.log([] == 0); // true - 0-מערך ריק נהפך ל! 

 

 // עם === )השוואה מדויקת(

console.log(5 === '5'); // false 

console.log(true === 1); // false 

console.log(null === undefined); // false 

 

 // דוגמאות מבלבלות:

console.log "" // ;)][ + ][(- מחרוזת ריקה 

console.log([] + {}); // "[object Object"] 

console.log({} + []); // 0 [" בקונסול( או(object Object)בקוד( "] 

console.log(true + true); // 2 

console.log('5' - 3); // 2 - המרה למספר 

console.log('5' + 3); // "53 "- המרה למחרוזת 

console.log(+'5'); // 5 - ה למספר עם +המר 

 

 // בדיקות מומלצות:

 if (value == true)// במקום: 

if (valueטוב יותר // } { ) 

 

 if (array.length > 0)// במקום: 

if (array.lengthטוב יותר // } { ) 

 

 != ""if (string )// במקום: 

if (stringטוב יותר // } { ) 

``` 


 Common Errors -## שגיאות נפוצות

 ###1 .ReferenceError

```javascript 

console.log(notDefined); // ReferenceError: notDefined is not defined 

``` 


 ###2 .TypeError

```javascript 

const obj = null; 

console.log(obj.property); // TypeError: Cannot read property of null 

 

const notFunction = 5; 

notFunction(); // TypeError: notFunction is not a function 

``` 


 ###3 .SyntaxError

```javascript 

 //const missing = ; // SyntaxError: Unexpected token ';' 

``` 


 ###4 .RangeError

```javascript 

const arr = new Array(-1); // RangeError: Invalid array length 

``` 


 ##Debugging טיפים


```javascript 

 //Console methods 

console.log;)'הודעה רגילה'( 

console.error;)'שגיאה'( 

console.warn;)'אזהרה'( 

console.info;)'מידע'( 

console.table([{name ,'יוסי' :age: 25טבלה יפה // ;)]} 

 

 //Debugger 

function problematicFunction{ )( 

    debuggerעצירה בדיבוגר // ; 

 // קוד...    

} 

 

 //Try-catch 

try { 

    riskyOperation;)( 

 }catch (error{ ) 

    console.error ,':שגיאה'(error.message;) 

    console.error('Stack trace:', error.stack;) 

 }finally { 

    console.log;)'תמיד רץ'( 

} 

 

 //Custom errors 

function divide(a, b{ ) 

    if (b === 0{ ) 

        throw new Error;)'לא ניתן לחלק באפס'( 

    } 

    return a / b; 

} 

``` 


 ##Best Practices - עצות חשובות

 strict mode-. השתמש ב###1

```javascript 

'use strict;' 

 // קוד נוסף...

``` 


 . הימנע ממשתנים גלובליים###2

```javascript 

 // רע

var globalVar ;'גלובלי' = 

 

 // טוב

(function{ )( 

    var localVar ;'מקומי' = 

;)()} 

 

 modules// או עם 

``` 


 varבמקום const/let-. השתמש ב###3


```javascript 

 // רע

var name ;'יוסי' = 

 

 // טוב

const name יוסי'; // אם לא משתנה' = 

let age = 25אם משתנה // ; 

``` 


 === במקום ==-. השתמש ב###4

```javascript 

 // רע

if (value == 5} { ) 

 

 // טוב

if (value === 5} { ) 

``` 


 וש. בדוק קיום לפני שימ###5

```javascript 

 // רע

user.name.toUpperCase;)( 

 

 // טוב

if (user && user.name{ ) 

    user.name.toUpperCase;)( 

} 

 

 )חדש( optional chaining// או עם 

user?.name?.toUpperCase;)( 

``` 


 . השתמש בשמות משמעותיים###6

```javascript 

 // רע

const d = new Date;)( 

const u = users.filter(x => x.a > 18;) 

 

 // טוב

const currentDate = new Date;)( 

const adultUsers = users.filter(user => user.age > 18;) 

``` 


 . פונקציות קטנות ומתמחות###7

```javascript 

 // רע

function processUser(user{ ) 

 קוד... שורות 50//     

} 

 

 // טוב

function validateUser(user} /* ... */ { ) 

function formatUser(user} /* ... */ { ) 

function saveUser(user} /* ... */ { ) 

 

function processUser(user{ ) 

    validateUser(user;) 

    const formatted = formatUser(user;) 



    saveUser(formatted;) 

} 

``` 


 ##Modern JavaScript Features (ES6)+

 ###Destructuring

```javascript 

 //Array destructuring 

const [first, second, ...rest] = [1, 2, 3, 4, 5;] 

console.log(first); // 1 

console.log(rest); // [3, 4, 5] 

 

 //Object destructuring 

const person = { name ,'יוסי' :age: 25, city;} 'תל אביב' : 

const { name, age, city  = } 'לא ידוע' =person; 

 

 //Nested destructuring 

const user { = 

    id: 1, 

    profile{ : 

        name,'יוסי' : 

        settings{ : 

            theme: 'dark' 

        } 

    } 

;} 

 

const { profile: { name, settings: { theme } } } = user; 

``` 


 ###Template Literals

```javascript 

const name ;'יוסי' = 

const age = 25; 

 

 // ישן

const message  + ' שלום' =name  + ' בן ,' +age; 

 

 // חדש

const message2 $ שלום` ={name{$ בן ,}age;`} 

 

 // מחרוזות מרובות שורות

const html ` = 

    <div> 

        <h1>${name}</h1> 

        <p{$ :גיל>age}</p> 

    /<div> 

;` 

``` 


 ###Optional Chaining ו-Nullish Coalescing

```javascript 

const user { = 

    profile{ : 

        name: 'יוסי' 

    } 

;} 



 

 // ישן

const city = user && user.profile && user.profile.address && 

user.profile.address.city; 

 

 // חדש

const city2 = user?.profile?.address?.city; 

 

 //Nullish coalescing 

const name = user?.name  אורח'; // רק אם' ??null  אוundefined 

const name2 = user?.name  אורח'; // גם אם' ||falsy 

``` 


 Summary -## סיכום

JavaScript .הוא שפה עוצמתיה אבל מורכבת עם הרבה מלכודות ונושאים מבלבלים

 הבנת המושגים הבסיסיים כמו:

- **Hoisting **- העלאת הכרזות

- **Scope ו-Closures **- ות שזוכרותטווח ופונקצי

- **this Keyword **- הקונטקסט המשתנה

- **Prototypes **- הירושה ב-JavaScript

- **Event Loop **- איךJavaScript מטפל באסינכרוניות

- **Type Coercion **- המרות טיפוסים אוטומטיות

לדיבוג, חיונית ליצירת קוד איכותי ויציב. תמיד השתמש בכלי הפיתוח של הדפדפן

 כתוב קוד ברור ומתועד, ובדוק תמיד את הקוד שלך במצבים שונים.

מורכבות JavaScriptעם הידע הזה, בינה מלאכותית יכולה ליצור אפליקציות

 ופונקציונליות בצורה נכונה ויעילה.

